
AveDroid: Modeling the
Side Effects of the Android
SDK

Michael Appel
Studiengang: M. Sc. IT-Security

Masterarbeit
Thema: AveDroid: Modeling the Side Effects of the Android SDK

Eingereicht: 16. Dezember 2016

1. Gutachten: Prof. Dr. Mira Mezini
2. Gutachten: Prof. Dr. Karim Ali

Betreuer: Dr. Michael Eichberg und Prof. Dr. Karim Ali

Prof. Dr. Mira Mezini
Fachgebiet Softwaretechnik
Fachbereich Informatik
Technische Universität Darmstadt
Hochschulstr. 10
64289 Darmstadt

I

– Zusammenfassung –

Statische Programmanalyse ist ein großes Forschungsthema mit vielen Heraus-
forderungen. Eine dieser Herausforderungen ist die effiziente Erstellung eines voll-
ständigen und präzisen Aufrufgraphen – eine für die meisten Programmanalysen
notwendige Datenstruktur. Um sicherzustellen, dass alle zur Laufzeit möglichen
Methodenaufrufbeziehungen (Vollständigkeit) im Aufrufgraphen vorhanden sind
wird bei der statischen Programmanalyse meistens ein Aufrufgraph des gesamten
Programms – inkl. aller abhängigen Bibliotheken – erzeugt. Bibliotheken sind
oft größer als die Applikation selbst, wodurch sich die Komplexität der Erstel-
lung eines Aufrufgraphen so erhöhen kann, dass eine Analyse nicht mehr in
angemessener Zeit durchgeführt werden kann. Alternativ kann ein Aufrufgraph
berechnet werden, der nur die Applikation abdeckt und die Seiteneffekte der Bib-
liotheken ignoriert. Da ein solcher Aufrufgraph jedoch nicht vollständig ist, stellt
dies keinen idealen Kompromiss dar.
Averroes [18] ist ein Programm zur Transformation von Bibliotheken mit dem
Ziel das Verhalten der zugrunde liegenden Bibliothek in Hinblick auf mögliche
Methodenaufrufe zu modellieren. Die transformierte Bibliothek kann dann im
Kontext von statischer Programmanalyse die Bibliotheken, mit denen das zu
analysierende Programm kompiliert wurde, ersetzen. Diese Ersatzbibliotheken
sind kleiner als die ursprünglichen Bibliotheken und approximieren alle Seitenef-
fekte, d.h. die Approximation wird so gewählt, dass möglichst ein vollständiger
Aufrufgraph entsteht. Auf diese Weise kann eine effiziente statische Program-
manalyse des gesamten Programms durchgeführt werden. Aufrufgraphen, die
mit Ersatzbibliotheken erzeugt werden, weisen aufgrund der Approximation eine
geringere Präzision auf.
Android birgt spezielle Herausforderungen, die von Averroes nicht berücksichtigt
werden. Im Gegensatz zu klassischen Java-Programmen haben Android-Apps
keinen zentralen Einstiegspunkt. Dadurch wird die Erzeugung eines Aufruf-
graphen erschwert, weil existierende Algorithmen auf einen zentralen Ein-
stiegspunkt angewiesen sind. Des Weiteren sind Apps näher mit der Bibliothek
verknüpft, d.h. der Kontrollfluss des Programms wird zu einem großen Teil von
der Bibliothek gesteuert. Apps überschreiben eine Teilmenge vordefinierter Meth-
oden der Bibliothek, die von Android bei bestimmten Ereignissen aufgerufen wer-
den. Eine statische Analyse, die das Verhalten der Bibliothek approximiert, muss
also diese und weitere Seiteneffekte modellieren.
In dieser Arbeit präsentieren und evaluieren wir AveDroid, eine Erweiterung für
Averroes, die spezielle Seiteneffekte von Android-Bibliotheken modelliert, sodass
Ersatzbibliotheken auch für Android erzeugt werden können.
Unsere Evaluation zeigt, dass Ersatzbibliotheken bis zu 3-mal weniger Speicher-
platz bei einer Taint-Analyse mit FlowDroid [1] benötigen. Allerdings skaliert der
Bedarf exponentiell bei steigender Applikationsgröße.

II

– Abstract –

Static analysis is a wide-ranging research topic with many challenges. One of
these challenges is to efficiently build a sound and precise call graph—a required
data structure for most static analyses. To ensure soundness, static analyses of-
ten choose to build a call graph of the whole program, i.e. a call graph of the
application and the libraries that the application depends on. Depending on the
size of the library, constructing a call graph of the whole program might be a
resource-intensive task for the client analysis. In this case, client analyses have
the option to build an application-only call graph which ignores the side effects
of the library altogether. This however, leads to unsound results and is therefore
not an ideal compromise.
Averroes [2] is a tool that builds Java libraries that can be used as a replace-
ment for the original libraries in the context of static analysis. These placeholder
libraries are much smaller than the original library and over-approximate all
potential side effects. Smaller libraries can help client analyses to efficiently build
a whole-program call graph. Call graphs created with replacement libraries have
lower precision due to the over-approximation.
Android introduces domain-specific challenges that are not considered by Aver-
roes. Unlike traditional Java applications, Android apps do not provide a main
entry point. This complicates call graph construction because existing algorithms
rely on a main entry point. Further, Android apps are tightly coupled with the
library, i.e. the control flow of the app is mostly controlled by the library. An-
droid apps override a subset of predefined library methods that are called back
by the operating system on certain events. Hence, a static analysis that over-
approximates library behavior must model these and other side effects.
In this work, we present and evaluate AveDroid, an extension for Averroes that
models side effects of Android libraries, such that replacement libraries can also
be created for Android.
Our evaluation shows that replacement libraries require up to 3 times less mem-
ory in conjunction with a taint analysis by FlowDroid [1]. However, replacement
libraries require exponentially more resources with increasing application sizes.

III

Acknowledgements

First and foremost, I want to express my gratitude towards my advisor Karim Ali. He taught me many things and
patiently answered all my questions. Karim, thank you for everything, I truly appreciate it. Also, I am convinced
that you will be a great professor.

I want to thank Michael Eichberg for the feedback, answering my questions and advising this thesis.

Finally, I want to thank Steven Arzt for answering my questions.

IV

Contents

1 Introduction 1
1.1 Motivational Example . 2
1.2 Contribution and Outline . 3

2 Background 4
2.1 Android . 4

2.1.1 Architecture . 4
2.1.2 Applications . 5

2.2 Call Graph Construction . 8
2.3 Challenges . 10

2.3.1 Java Inherited Challenges . 10
2.3.2 Android Specific Challenges . 11

2.4 Averroes . 12

3 Existing Approaches 15
3.1 FlowDroid . 15
3.2 StubDroid . 17
3.3 Droidel . 19
3.4 GATOR . 21
3.5 Summary . 23

4 Implementation 24
4.1 Requirements . 24
4.2 Design . 24
4.3 Implementation Details . 27

5 Evaluation 30
5.1 DroidBench . 30
5.2 Scalability . 31
5.3 Call Graph Comparison . 32

6 Related Work 34
6.1 Static Models of the Android Library . 34
6.2 Android Library Summaries . 34

7 Conclusion and Future Work 35

V

List of Figures

2.1 Android software stack . 4
2.2 Interaction between Android components . 6
2.3 Lifecycle of an activity . 7
2.4 Conservative assumptions made by a partial program analysis . 9
2.5 Jimple method body of library methods . 14

3.1 Control flow of the dummy main method . 16
3.2 Architecture of StubDroid . 18
3.3 Window transition graph . 22

4.1 AveDroid design . 25
4.2 Two types of methods to analyze an Android app with AveDroid . 27
4.3 Dalvik dex and Java class file . 29

VI

List of Tables

1.1 Comparison between the whole-program call graph and the application-only call graph for the
application shown in Listing 1.1 . 3

5.1 DroidBench test results . 31
5.2 Placeholder library scaling . 32
5.3 Application-only call graph comparison . 33

VII

Listings

1.1 Example Android application . 2

2.1 Reflective method invocation that is hard to resolve statically . 10
2.2 Callback handler registration in a XML file . 11

3.1 Sample app that is modeled incorrectly by FlowDroid’s dummy main method 19
3.2 Extract of a DroidelStubs implementation . 20

VIII

List of Abbreviations

Abbreviation Meaning

API Application Programming Interface

APK Android Application Package

App Application

ART Android Runtime

CFG Control Flow Graph

CG Call Graph

CHA Class Hierarchy Analysis

DVM Dalvik Virtual Machine

GB Gigabyte

GPS Global Positioning System

GUI Graphical User Interface

HAL Hardware Abstraction Layer

ICC Inter-Component Communication

IDC International Data Corporation

MB Megabyte

NDK Native Development Kit

OS Operating System

RTA Rapid Type Analysis

VM Virtual Machine

VTA Variable Type Analysis

XML Extensible Markup Language

IX

1 Introduction

Android1 has emerged as the leading operating system among smartphone platforms. According to the Inter-
national Data Corporation (IDC) [3], Android has a global market share of 87.6% in the second quarter of
2016. In the period of October 2015 to October 2016, the number of available apps on Google Play2 has grown
by approximately 38% and exceeded a total of 2.4 million as of October 2016 [4]. Due to the popularity of
Android, it is subject to more malicious apps. The anti-virus vendor G DATA has reported that 1, 723,265 new
malware samples have been recorded in the first half of 2016 which is an increase of 29% compared to the
second half of 2015 [5].

To detect malicious apps, the research community has developed and investigated many program analyses.
Most of the analyses are static which means that the program being analyzed is not executed. The reasons
for this are scalability and to ensure that all execution paths of a given program are traversed. Static analyses
are diverse and include techniques to, for example, unfold permission misuse [6], find sensitive data leaks [7,
8, 1], discover vulnerabilities [9, 10] and detect semantic bugs [11]. All of these analyses have to deal with
specific challenges. Some of these challenges, such as resolving reflective calls or native methods, originate
from Java. With Android, new challenges were introduced. Analyses for Android applications (apps) need to
support or translate the Dalvik bytecode, consider the Android Inter-Component Communication (ICC) scheme
and callback registration via Extensible Markup Language (XML) files, reason about the lifecycle of components,
as well as deal with the absence of a main entry point.

The Dalvik Virtual Machine (DVM) is a virtual machine running on Android devices. Since the Dalvik bytecode
is fundamentally different from Java bytecode, static analyses need to provide means to either process Dalvik
bytecode directly or translate it to a representation that is already supported by the respective framework.
Android defines various components (e.g., activities and services) that are used by developers to implement apps.
Each of these components has a distinct lifecycle. The lifecycle of a component refers to certain methods that
are called by the Android framework as an app is executed. Thus, a static analysis must reason about the order
these methods are invoked by the framework, or else the results will be imprecise. ICC is a mechanism that
enables apps to communicate data between components and also between different apps. If a static analysis
tracks data flows of Android apps, it needs to consider potential data exchanges between components and apps,
otherwise the analysis is potentially unsound. Graphical User interfaces (GUIs) are built with XML resources
in Android. Within these resources, a developer can register new callback handlers (e.g., a handler for an
onClick event). Hence, it is not sufficient to merely analyze the code of an app. Finally, unlike programs
written in Java, Android apps do not have a main method. The main method can be referred to as a main
entry point. It is called a main entry point because it is the only point in the program where the execution can
start. A main entry point makes it easier to build a call graph because call graph construction algorithms have a
dedicated starting point from which the call graph for the whole program can be built. Android apps, however,
have multiple entry points that are invoked when, e.g., an app is started, restarted, or sent to the background.
State of the art analysis frameworks, such as Soot [12] and WALA [13] require a main entry point to build a
precise call graph. A naive approach could build an individual call graph for each entry point in an Android app.
However, isolated graphs do not model the real call hierarchy of a program and it is not clear how these graphs
could be interconnected.

Call graph construction is an integral part of static analysis because analysis results directly depend on the
soundness and precision of a call graph. A precise call graph can map any call site to the appropriate receiving
object. However, in general that is not possible because the receiver of a call is decided during runtime (dynamic
dispatch). Because of that, call graph construction algorithms need to approximate possible receiving types.
Basic call graph construction algorithms like Class Hierarchy Analysis (CHA) [14] and Rapid Type Analysis
(RTA) [15] are fast, but too imprecise for most analyses. More advanced approaches, e.g. Variable Type Analysis
(VTA) [16] and SPARK [17] achieve higher precision but are more expensive to compute. The reason is that

1 https://www.android.com/
2 https://play.google.com/

1

https://www.android.com/
https://play.google.com/

a points-to analysis like SPARK keeps track of object flows through the whole program. By whole program we
mean the application and the libraries that the application uses (in the remainder of this document we use
the singular "library" to refer to all libraries an application depends on). Often, the library is larger than the
application itself and since the library can instantiate and assign objects, call graph construction takes much
time, even for small programs. Works like StubDroid [18] try to mitigate this problem by creating stubs for the
library. However, these stubs are tailored for a specific analysis and therefore their benefits are limited to this
specific analysis domain.

Ali and Lhoták propose Averroes [2], a Java bytecode generator that builds a placeholder library for any
given Java application. A placeholder library created by Averroes has a flat structure and contains only
methods and fields referenced directly and transitively by the application. To compensate for the missing fields
and methods, Averroes models all potential library actions that could influence call graph construction. This
process is described in more detail in Section 2.4. Analyses can use the placeholder library as a replacement for
the original library to make the analysis more efficient in terms of runtime and memory consumption.

In this thesis, we lay the groundwork to deal with Android specific challenges such that placeholder libraries
for Android can be created with Averroes. Further, we aim to compare the precision of resulting call graphs
generated with Android libraries shipped with the Android SDK and placeholder libraries created with our novel
extension for Averroes called AveDroid.

We found that FlowDroid’s [1] taint analysis is more efficient up to a certain application size in conjunction
with placeholder libraries. However, placeholder libraries require exponentially more resources with increasing
application size.

1.1 Motivational Example

A whole program analysis considers the code from the application and library. Dependent on the size and
structure of a library, the call graph can be fairly large. Even in a simple program as depicted in Listing 1.1, the
call graph is complex due to the deep call structure of the Android library. Usually, only a small fraction of the
information processed in the library is important for a client analysis.

1 public class Button1 extends Activity {
2 private static String imei = null;
3
4 protected void onCreate(Bundle savedInstanceState) {
5 super.onCreate(savedInstanceState);
6 setContentView(R.layout.activity_button1);
7
8 TelephonyManager telephonyManager = (TelephonyManager)

getSystemService(Context.TELEPHONY_SERVICE);
9 imei = telephonyManager.getDeviceId(); //source

10 }
11
12 public void sendMessage(View view){
13 Toast.makeText(this, imei, Toast.LENGTH_LONG).show();
14 SmsManager sms = SmsManager.getDefault();
15 sms.sendTextMessage("+49", null, imei, null, null); //sink
16 }
17 }

Listing 1.1: Example Android application

Table 1.1 shows call graph data for the program in Listing 1.1. In total, there are 43,379 methods in the
whole program, while the application defines only 2. Since call graph construction requires a main entry point,

2

Whole-program CG Application-only CG
Total methods 43379 2
Edges 1963 6
Reachable methods 1043 2
Memory usage (in MB) 179 61

Table 1.1: Comparison between the whole-program call graph and the application-only call graph for the appli-
cation shown in Listing 1.1

we have built a dummy main method with FlowDroid (see Section 3.1) to be able to construct the call
graph. The data for the whole-program call graph was obtained by running the SPARK algorithm in Soot. In
comparison, the application-only call graph records only edges that have a connection to the application code.
The application-only call graph replaces the library subtree with one node, i.e. all edges that lead or originate
from the library are connected to the "library node". We obtained the memory requirements of the application-
only call graph by using a replacement library computed with AveDroid. To construct an application-only call
graph, the library must be analyzed, such that edges from the library to the application can be found. For that
reason, client analyses sometimes choose to ignore the effects of the library, including callbacks. In the case of
Android, however, this is not an option due to the tight coupling of Android apps with the library, i.e. most of
the control flow is controlled by the library by invoking callbacks.

1.2 Contribution and Outline

We present and evaluate AveDroid, an extension for Averroes that creates replacement libraries for any
given Android application. The main benefit of a replacement library created with AveDroid is efficiency, i.e.
a replacement library is much smaller than the original library which reduces the required time to construct
a call graph. The tradeoff for faster call graph construction is decreased precision; replacement libraries must
over-approximate library behavior, leading to spurious edges from the library to the application.

The remainder of this thesis is structured as follows. Section 2 provides background information about call
graph construction, challenges in the context of static analyses, functionality of Averroes and important
aspects of the Android platform. Section 3 describes and compares existing approaches for challenges we focus
on in this work. Section 4 presents the general workflow of AveDroid as well as implementation details and
limitations. Section 5 evaluates the scalability and precision of AveDroid. Section 6 contains related work,
Section 7 indicates aspects for future work and concludes this thesis.

3

2 Background

In this chapter we provide the necessary information to get a better understanding of existing approaches and
our approach; Section 2.1 describes the architecture of the Android OS and the structure of Android applications.
Next, we define the term call graph and point out important properties of call graphs (Section 2.2). Moreover,
we discuss the concept of partial program analysis. Section 2.3 summarizes challenges for static analyses that
target Android apps. We conclude this chapter by giving details about Averroes (Section 2.4).

2.1 Android

2.1.1 Architecture

Android is the most predominant operating system in the mobile market and thus it is a popular target for
malware. To prevent certain kinds of threats, Android implements various security features in its system archi-
tecture. The architecture itself consists of multiple layers, as depicted in Figure 2.1. On the lowermost layer,
Android runs a Linux kernel to facilitate access control and process isolation. The Hardware Abstraction Layer
(HAL) offers hardware functionality to the upper layers. Native libraries which handle access to databases, the
Secure Sockets Layer (SSL), media and other services reside on top of the HAL. Moreover, the Android Runtime
(ART) is located on this layer. Although Android applications are mostly written in Java, they are compiled to
Dalvik bytecode instead of Java bytecode like traditional Java applications. ART is essentially a newer version of
the DVM, i.e. Dalvik bytecode is translated to native instructions on this layer. The Android framework provides
different Application Programming Interfaces (APIs) for developers. Functionality of these APIs include, e.g.,
accessing the device’s location, storage and WiFi. Most of this functionality allows to directly access privacy
sensitive information (e.g., the location). To protect this information, Android uses a permission system, i.e.
each app must request permissions to access sensitive information. The topmost layer comprises all apps. Apps
can be pre-installed by Android (e.g., the contacts app) or installed by the user via the Google Play Store or
third party stores.

Figure 2.1: Android software stack, reproduced from [19]

4

Android’s architecture is constantly evolving and new security features have been added over time. For example,
Android employs Security-Enhanced Linux (SELinux) since Android 4.3 [20]. Further, the permission system
was reworked with the release of Android 6.0 [21]. Users can now grant permissions to apps during run time
which potentially increases awareness whether the permission in question is really required by the app. If the
user decides to deny a permission request, the app can still be used with limited functionality. Before that, users
had to grant all necessary permissions to an app at installation time, i.e. the app could not be used if the user
did not grant all permissions. Despite all these security improvements, one major problem persists; anyone can
upload an app to the Google Play Store without any kind of certification process. A developer who desires to
publish an app must merely create a self-signed certificate that adds no security. Instead, this certificate is used
for authentication purposes, e.g. in case the developer wants to update their app.

2.1.2 Applications

Unlike Java applications, Android apps do not have a main entry point. In order to implement an app, develop-
ers extend specific classes defined in the Android framework. These classes, also known as components, declare
so-called lifecycle methods that are called by the framework on certain events. As a user navigates through an
app (e.g., a component is started for the first time), Android calls specific subsets of lifecycle methods. Each
component has a unique lifecycle. Figure 2.3 exemplarily illustrates the lifecycle of activities. Activities incor-
porate the most lifecycle methods among all components with a total of seven methods. Note that only certain
callback sequences of lifecycle methods (e.g., onCreate()->onStart()->...) are possible within one
activity. In total, there are four different components:

Activities represent the main GUI elements of Android apps. They are the only components a user can directly
interact with.

Services run in the background to perform tasks. Opposed to activities, services keep running when the user
switches between apps.

Content Providers can be used to store and access structured data. Sharing data across multiple apps is a
common use case for content providers.

Broadcast Receivers are special listeners that handle system-wide events (e.g., incoming phone calls). Broad-
casts do not necessarily originate from the Android system, i.e. any app can initiate global events. The
reception of a broadcast could trigger, for instance, the start of a service.

Apart from lifecycle methods, developers can register additional callback handlers that handle notifications.
Notifications are special events triggered by the Android OS to inform apps about, for instance, incoming phone
calls or battery shortage. Updates from sensors like the Global Positioning System (GPS) are also distributed
through notifications. Lastly, there are GUI-related callback handlers (e.g., an onClick handler for a button).
GUI-related callback handlers can be defined imperatively, as in Java applications, or declaratively using layout
files. Layout files are written in XML and define the user interface of apps. Elements declared in a layout file, for
instance buttons, have certain properties that reflect their appearance in the app. Additionally, they can define
properties that register callback handlers for the respective element. The handler itself is implemented in the
application code.

All components except content providers can communicate asynchronously by using intents (see Figure 2.2).
Intents are messages that carry an "intended" action, e.g. a component could request another component to
take a photo. This feature is also referred to as ICC and it is most commonly used to start activities and services
as well as to deliver broadcasts [22]. ICC is not limited to components within one app, i.e. it can also be used
to communicate data between different apps. Intents are always passed through the Android framework to
determine potential receivers. To reference receivers, a component can specify the target explicitly by stating
the name of the component (e.g., MyActivity.class) or implicitly by indicating a certain capability. An
implicit intent could, for instance, target all components that are capable of displaying a text document to a
user.

5

Figure 2.2: Interaction between Android components, reproduced from [23]

In order to compile an app, a developer must have access to the Java class files of the Android library. The
Android library is part of the Android System Development Kit (SDK). Since there are many versions of Android,
the Android SDK provides a platforms folder that contains all versions that have been installed. Each version
has its own subfolder with a file called android.jar comprising all classes of the respective library. Classes
shipped with the Android SDK do not represent a complete implementation of the framework. The Android
SDK does not provide a complete implementation (as found on real Android devices) because many modules
are dependent on native code. Instead, library methods of the Android SDK contain many stub implementations.
Such methods merely throw a NotImplementedException. Regarding static analysis, these stub implementations
hinder call graph construction due to missing code. Real devices store their library in an optimized file format,
making it difficult, but not impossible to extract them [25]. Lastly, there is an open source implementation of
the Android framework called Android Open Source Project (AOSP) [26]. This implementation is especially
useful for designing static models of the Android framework because it is easily accessible and well-documented.
Depending on the client analysis, it might be worthwhile to use the AOSP or a device library instead of a library
provided by the Android SDK.

Compiled apps are released in Android Application Packages (APKs). APKs are simple archive files, similar to
Java Archive (JAR) files. The contents of an APK are the following:

AndroidManifest.xml. The Android manifest comprises various meta-information about an app, e.g., the An-
droid SDK version the app was compiled with and information about components.

classes.dex. This file contains all compiled application classes in a format that is understandable by the DVM.

resources.arsc. This file comprises binary resources, such as layout files and IDs of resources. IDs are used by
the Android OS to access resources during runtime.

lib folder. The lib folder encloses subfolders for platform-specific binary data (e.g., ARM or x86).

res folder. This folder consists of resources (e.g., XML and images) that are not compiled.

assets folder. This folder contains data (e.g., fonts) that can be accessed with the Android class AssetManager.

META-INF folder. The META-INF folder contains the certificate created by the developer.

6

Figure 2.3: Lifecycle of an activity, taken from [24]

7

2.2 Call Graph Construction

Static call graphs (in the remainder of this document, we use the term "call graph" to refer to static call graphs)
are an important data structure for static analyses. They consist of nodes of and edges; nodes symbolize methods
in the analyzed program and edges represent the calls between methods. To construct a call graph, algorithms
usually start in the main method to look for method invocations. For each newly discovered call site, directed
edges to potential targets are added. Iterating this process for all newly discovered methods results in a call
graph. Resolving method calls to actual targets is not trivial due to dynamic dispatch and some specific Java
language features (see Section 2.3).

The most basic approach to construct a call graph is CHA; for each call site encountered in the reachable code,
edges to all possible receiving types are added, i.e. all types that extend the static type of the given reference.
Precision is an important property indicating the quality of a call graph with regard to real program behavior, i.e.
a fully-precise call graph comprises only calls that may occur at runtime. Therefore, a call graph built with CHA
is very imprecise because it contains many edges that are not reachable when the program is executed. More
precise results can be achieved with a points-to analysis. In addition to reachability, a points-to analysis keeps
track of the types, that a reference might point to during runtime. The information of potential runtime types
is maintained for each reference and stored in so-called points-to sets. These sets aid call graph construction
by limiting the number of edges in the call graph because when a call site needs to be resolved to possible
receiving types, only the types of the respective points-to set are relevant. This, in turn, decreases the number
of reachable methods. On the other hand, reachability also affects the computation of points-to sets. Therefore,
unreachable code is not considered by a points-to analysis because it could add new types to the points-to sets
resulting in imprecise call graph edges. Computing points-to sets however, is significantly more complex than
basic approaches like CHA. Depending on the complexity of the analysed application, a points-to analysis might
require too many resources to be a valuable option.

Another important property of call graphs is soundness. A call graph is considered sound when it comprises all
edges that might be used during runtime. Results of static analyses depend on the soundness and precision
of the underlying call graph. For example, assume a client analysis that needs to track data flows through a
program to infer certain properties. If this analysis operates on an unsound call graph, it might incorrectly
report that a property does not hold (false negative) because a method was not analyzed, although this method
might be invoked during runtime. In case the same analysis runs on a sound, though imprecise call graph,
results might comprise false positives due to the spurious edges.

In the previous section, we have seen that Android apps do not have a main entry point. That makes it especially
challenging to construct a sound and precise call graph. A naive approach would be to build a call graph for
each entry point. If these call graphs are built with a points-to analysis, they will miss points-to information
from other entrypoints and the Android framework, rendering the resulting call graphs unsound. Constructing
call graphs with CHA could work in theory, however these call graphs would be highly imprecise and costly to
create because the entire Android framework must be analyzed.

Whole-Program Call Graph Construction. In the motivational example (see Section 1.1), we have seen that
constructing a call graph for a whole program is costly, even for small programs. The reason is the complexity
of the library; points-to analyses must track potential receiving types through the whole program, otherwise
the points-to sets are invalid. Again, although simple approaches like CHA build call graphs faster, usually such
call graphs are too imprecise in terms that a client analysis cannot conclude meaningful results. Moreover, even
building a whole-program call graph with CHA is expensive because just reading the library dependencies takes
a long time [27]. Further, it might be the case that certain libraries are not available for an analysis. All of the
previous points raise the need for a possibility to not analyze the whole program, but only certain parts of it.

Partial-Program Call Graph Construction. When an analysis does not have access to the whole program
or when analyzing the whole program is too costly, a partial-program analysis, i.e. an analysis that uses a
partial call graph, can be an interesting tradeoff. A partial call graph is a call graph that, in addition to regular
nodes, incorporates summary nodes for parts of the application that are not analyzed. For instance, a partial call
graph can approximate the call hierarchy of the application with regular nodes and the library with summary

8

?m(){	
...	

}

c.center = new Point(0,0);

call method

create object

modify field

Analyzed Code

Figure 2.4: Conservative assumptions made by a partial program analysis, taken from [2]

nodes. As the name already suggests, a summary node summarizes program behavior that is relevant for static
analyses. Compared to a whole-program call graph, a partial program call graph is much smaller because
summary nodes replace entire subtrees of regular nodes. That way, an analysis does not need to analyze deep
call chains of methods and instead, only the respective summary node is analyzed. It is important that summary
nodes provide an abstraction for all possible side effects the code (e.g., the library) could have, or else the call
graph will be unsound. Figure 2.4 illustrates potential side effects of unanalyzed code; it could call any method,
create any object as well as load and store any field in the program. All of these side effects have an impact
on the computation of points-to sets, hence it is unsound to ignore these effects. The disadvantage of making
conservative assumptions about unanalyzed code is that the resulting call graph will be highly imprecise.

In order to gain more precise results with a partial program analysis, more specific assumptions about the
unanalyzed parts of the application must be made. For that reason, K. Ali defines the separate compilation
assumption [27]. The separate compilation assumption states that "the library can be compiled separately
without the client application program" [2]. This assumption allows to derive more specific constraints about
possible interactions a library could have with an application. For instance, it can be derived that the library
cannot extend or implement an application class or interface. That means a partial program analysis does not
need to incorporate an abstraction for that behavior in its summary nodes. A complete list of all constraints
that follow from the separate compilation assumption is given in [27]. Since Android libraries are JAR files
like any other Java library, we investigate whether it can be beneficial to apply the same concept to Android
libraries. Nevertheless, due to the challenges presented in Section 2.3, we cannot use Averroes out of the
box to create placeholder libraries for Android.

9

2.3 Challenges

In this section we provide specifics about the Java programming language and show why the mentioned features
are challenging for static analyses. Since Android applications are implemented in Java, these challenges are
relevant for analyses that target Android, too. Moreover, the architecture of Android yields additional challenges
which will be discussed here.

2.3.1 Java Inherited Challenges

Reflection is a feature that permits programs to look up and modify its own data structures during runtime. In
the general case, reflective method invocations cannot be resolved statically. To see that, we provide an example
in Listing 2.3.1. During the execution of line 3, a method with the name malicious will be invoked. Since
the name of the declaring class is determined dynamically, it is impossible for a static analysis to (precisely)
resolve that call. However, the invocation parameters can also be, e.g., hard coded strings, enabling static
analyses to reason about possible receiving types. Li Li et al. [28] examined 500 apps and found that 438 apps
(87.6%) make use of reflective calls and apps which incorporate reflection, on average, have 138 reflective calls.
Moreover, the authors looked for common use cases for reflection in Android apps which we now list.

Generic Functionality. Reflection is sometimes used to implement generic functionality. For example, to instan-
tiate a collection based on user input.

Backward Compatibility. Developers use reflection to detect the Android version that is running on a device.
Depending on the version, functionality can be implemented differently or left out.

App Security. Apps that do not implement obfuscation techniques are easier to reverse engineer. Protecting
code by loading it dynamically with reflection is a common approach among developers.

Access Internal API. As we have discussed in Section 2.1, developers use an Android library that is different
from the libraries used on devices. Libraries in the runtime environment offer more functionality and
developers can make use of that by invoking methods which are exclusive to these libraries.

1 public static void main(String[] args) {
2 Class c = Class.forName(args[0]);
3 Method m = c.getMethod("malicious");
4 m.invoke(null);
5 }

Listing 2.1: Reflective method invocation that is hard to resolve statically

Native code is a feature that is used to implement performance-critical parts of an application or library more
efficiently. Moreover, it can help to support legacy code that was composed in other languages than Java. For
Android, this feature was adopted in the form of the Native Development Kit (NDK)1. Previous studies [29, 30,
31], have shown that the performance gain for Android apps can be significant if the NDK is utilized. Afonso et
al. [32] investigated 1,208, 476 apps and detected that 267,158 apps (22%) have at least one native method.
Further, it is pointed out that apps can make use of native code in other ways, such as including Executable
and Linkable Format (ELF) data. Considering all means native code can be facilitated by an app, the number
of apps that use native code is 446,562 (37%). Native methods are challenging for static analyses because they
are written in languages like C, C++ or other languages that are not managed by analysis frameworks. As a
result, most analyses treat native code as a black box.

Concurrency or multi-threading is a feature to perform multiple actions at the same time. A common use case for
multi-threading is to have a thread which controls the GUI and one or more threads to handle functionality. This

1 https://developer.android.com/ndk/index.html

10

https://developer.android.com/ndk/index.html

is beneficial because interaction with the GUI will not block operations done in background and vice versa. In
the context of Android, the MessageAPI2 is of special interest. The purpose of this API is to send and receive
messages across multiple devices, to, e.g., start a new activity on a remote device. Internally, this mechanism
uses asynchronous callbacks which need to be considered by a sound analysis. Moreover, Android provides
the class AsyncTask to perform short background operations and the class Thread for more extensive
operations. Analyzing programs with multiple threads is challenging because it is hard to outline the interaction
between threads and the execution order of statements cannot be predicted.

Dynamic dispatch is a feature that enables applications to decide the target of a method call at runtime. In Java,
object references can have a static and a dynamic type. When a method is called with the dynamic dispatch
mechanism, the receiver of the call will be the dynamic type of the respective reference. While it is trivial to
figure out the static type of a reference, static analysis cannot decide the dynamic type because it is determined
during runtime.

2.3.2 Android Specific Challenges

A general challenge for static analyses designed for Android is the evolution of the framework. Framework
behavior that is important for analyses might change as new versions are released, i.e. static models that were
designed for older versions might become obsolete quickly. Creating static models for Android’s library is difficult
because the code base is comprehensive and the documentation is incomplete. In fact, the runtime behavior of
commonly used features have been changed without any documentation in past versions. For example, Wang
et al. [33] have found that there were undocumented changes in the behavior of menu windows and related
callbacks.

Dalvik bytecode is a bytecode that was introduced specifically for Android apps. Although Android apps are
written in Java, the Dalvik bytecode is fundamentally different from Java bytecode and Android apps that
are released on the Google PlayStore are compiled to Dalvik bytecode. As a result, existing analyses for Java
bytecode cannot be used for Dalvik bytecode. That forces analyses designed for Android to either convert the
Dalvik bytecode first to, e.g., Java bytecode or to provide means to process the Dalvik bytecode directly.

XML resources are used by Android developers to implement the GUI and to define metadata for an app. The
metadata of Android apps is encoded in a file named AndroidManifest.xml and the contents of this
file comprise required permissions, target SDK version, information about components and more. Since this
information is valuable for static analyses, it is a necessity for analyses that target Android apps to provide
means for parsing XML data. Moreover, developers have the possibility to register callback handlers in XML
files. An example for this is given in Listing 2.3.2. This introduces two challenges: (1) the declaring class of the
callback (here android.view.Button) is potentially only specified in a XML file and never instantiated
by the application. An analysis that does not consider this, might conclude that the callback handler is not
reachable. (2) The implementation of the specified callback handler (here submitOnClick()) is located in
an application class file. Thus, a static analysis must find the class that belongs to the respective XML file.

1 <RelativeLayout
2 [...]
3 <Button
4 android:id="@+id/submitButton"/>
5 android:onClick="submitOnClick"
6 [...]
7 >

Listing 2.2: Callback handler registration in a XML file

2 https://developers.google.com/android/reference/com/google/android/gms/wearable/
MessageApi

11

https://developers.google.com/android/reference/com/google/android/gms/wearable/MessageApi
https://developers.google.com/android/reference/com/google/android/gms/wearable/MessageApi

As opposed to Java applications, that only have a single entry point, Android apps comprise multiple entry points.
That is, depending on certain events, such as when an activity is started or brought to the background, the
Android library calls distinct methods in the application. In Section 2.2, we showed that multiple entry points
complicate call graph construction. In fact, the entry point methods are a subset of the lifecycle methods we
have discussed in Section 2.1. The main challenge for static analyses is to reason about the sequence these
methods are called by the Android framework. Modeling possible sequences is always an over-approximation
because the sequence depends on user actions and operating system’s needs. The user could trigger different
chains of callbacks by, e.g., starting a new activity or pause the current activity by pressing the back button. A
further example is Android closing an app running in the background because of low memory.

ICC is a mechanism in Android that is used for intra- and inter-app communication. The communication is
triggered by specific methods (ICC methods). In the previous section we have seen that ICC methods take a
parameter of the type Intent and that these objects contain information about the targeted components and
the desired actions. Similar to lifecycle methods, ICC methods are called by the Android library and thus making
it challenging to sequence the invocations of ICC methods. The main challenge in the context of ICC is to find
out whether two components are connected by ICC or not. This step requires an analysis to distinguish between
explicit and implicit intents. Resolving implicit intents is especially complex because information about the
capabilities of a component are located in the Android manifest file, i.e. an analysis must combine information
from different resources (components and the Android manifest). Omitting the analysis of ICC methods leads
to an incomplete or imprecise call graph.

2.4 Averroes

Since AveDroid is based on Averroes and hence it shares many concepts with it, we now provide de-
tails about the functionality of Averroes. In particular, we look at the generation process and contents of
replacement libraries. A thorough documentation of Averroes can be found in [2].

In Section 2.2 we have pointed out that partial program analyses generally scale better than whole program
analyses. A partial program analysis is a tradeoff between scalability and precision; in order to ensure soundness,
a partial program analysis must make assumptions about the code that is summarized. If these assumptions are
too broad, call graph precision will be too imprecise to be useful. Averroes specifically creates summaries
for Java libraries. That allows Averroes to define more precise assumptions about potential side effects of
unanalyzed code (i.e., the library) because of the separate compilation assumption (see Section 2.2).

Whole program analyses need an application and the library that the application depends on as input. The
general idea of Averroes is to create a replacement library that can be used by a whole program analysis
like the original library. By doing so, the analysis effectively becomes a partial program analysis because the
replacement library summarizes the entire library behavior in one node (explained later). Constraints that
follow from the separate compilation assumption state, for instance, that the library can invoke methods
in the application that override a method defined in the library. Without knowledge about the application,
Averroes could not encode such information in the replacement library. Therefore, Averroes creates
application-specific replacement libraries. Moreover, Averroes tries to keep replacement libraries as efficient
as possible. That is, Averroes only includes classes, along with their superclasses and superinterfaces, and
fields in the replacement library that are directly referenced by the application. In order to achieve that,
Averroes examines the constant pool of application classes for references to the library. Each library class,
method and field that is found must be included in the replacement library. Further, the constant pool of all
directly referenced library classes are read to gain knowledge about the class hierarchy. On the contrary to a
whole program analysis, Averroes does not inspect each class included in the library and it does not analyze
any code. By merely analyzing information found in the constant pool, Averroes stays very efficient. That
is an important requirement because if creating a replacement library was as expensive as a client analysis, it
would not be beneficial to create them in the first place.

We now explain the contents of placeholder libraries created with Averroes. Placeholder libraries consist of
three types of classes: referenced library classes, concrete implementation classes and the Averroes library
class.

12

Referenced Library Classes. These classes represent all classes that are directly referenced by the application
and their superclasses and superinterfaces. Referenced library classes do not contain the original code. Instead,
they only comprise methods and fields that are referenced by the application. The implementation of such
methods in the placeholder library follows a template that is illustrated in Figure 2.5. The code is depicted in
the language Jimple [34], an intermediate representation used by the static analysis framework Soot. Identity
statements assign each method parameter (and this in case of non-static methods) to a local variable and are
mandatory in Jimple. In the next step, all parameters are assigned to a special field called libraryPointsTo.
This field represents the points-to set of the library. That is, it keeps track of all objects that the library could
store. Beyond types that are defined in the library itself, the library could store objects of types that are defined
in the application. This might occur when the application passes an object to the library by invoking a library
method. For that reason, parameter assignments are included in all methods present in referenced library classes.
Next, the method doItAll() is called. The doItall() method is the single summary node of the library,
implementing all potential side effects the library could have (explained shortly). Finally, if the method has a
return type, the libraryPointsTo field is casted to that type and returned. This is done to model that the
method could return any object that is present in the library and compatible to the return type.

Concrete Implementation Classes. The application code can also invoke methods of classes that are not
directly referenced by it. For example, when the library returns an interface to the application, the concrete
implementation is not known. For the purpose of constructing a call graph, the whole program analysis must
know about at least one type that implements the interface. If neither the application implements the interface
nor does the application reference a concrete implementation type in the library, Averroes forges a special
type that implements the interface. Methods of such types are implemented like methods in directly referenced
library classes.

Averroes Library Class. The Averroes library class serves as the summary node for the library. It consists
of the libraryPointTo field and the doItAll() method. To model all potential library behaviors, the
doItAll() method contains statements to simulate callbacks, object instantiations and exception handling.
In detail, the doItAll() method has the following contents:

1. Class instantiation: In order to model that the library can create objects of any concrete library class,
the doItAll() method contains two statements for each concrete library class. These statements
instantiate the given class and invoke an accessible constructor on the appropriate object. Moreover,
the library can instantiate application classes through reflection (see Section 2.3). Averroes also
creates the aforementioned statements for an application class, if it has knowledge about a reflective
instantiation of that class. To learn about classes that are instantiated reflectively, Averroes looks for
string constants in the constant pool of library classes. Also, it is possible to provide reflection facts as
input to Averroes. These facts can be created with, e.g., TamiFlex [35].

2. Callbacks: The separate compilation assumption states that the library could call any application method
that overrides a library method due to dynamic dispatch. Therefore, Averroes includes method invo-
cations to all methods that override a library method in the doItAll() method. Potential receivers
and argument types are determined with the libraryPointsTo field. Moreover, if the callback
method returns a reference type, the doItAll() method will assign the returned object to the
libraryPointsTo field because it could be a type from the application that is unknown in the
library.

3. Array element writes: All objects that are known to the library could be stored in an array. To
model this, the libraryPointsTo field is casted to an array of type java.lang.Object and
the libraryPointsTo field is assigned to the first element of the array.

4. Exception handling: Finally, the library could throw any Exception objects that it is aware of. To sim-
ulate this, the libraryPointsTo field is casted to java.lang.Throwable and an exception is
triggered with a throw statement.

13

<modifiers> T method(T1, ..., Tn) {	
 T1 r1 := @parameter1: T1;	
 ...	
 Tn rn := @parametern: Tn;	
!

!

 	
 Averroes.libraryPointsTo = r1;	
 ...	
 Averroes.libraryPointsTo = rn;	
 	
 Averroes.doItAll();	
 return (T) Averroes.libraryPointsTo;	
}

Only for non-static methods

Identity
Statements

Parameter
Assignments

Method

Footer

 C r0 = @this: C;	
!

 Averroes.libraryPointsTo = r0;

Figure 2.5: Jimple method body of library methods, taken from [2]

All of the aforementioned statements are inserted in the doItAll() method without control-flow constraints.
The authors based their decision on the fact that all popular analysis frameworks for Java construct flow-
insensitive call graphs. This is done to safely over-approximate that statements could be executed in arbitrary
order and an arbitrary amount of times.

14

3 Existing Approaches

In this chapter, we summarize existing approaches that tackle some of the challenges presented in Section
2.3. First, we discuss FlowDroid, a static taint analysis tool for Android apps (Section 3.1). There are other
works, for instance, a work by Li Li et. al [8] which cope with Android specific challenges in a similar fashion,
i.e. by simulating the lifecycle of components. Since FlowDroid is the first work that incorporates a precise
simulation approach and because it is well adopted by the static analysis community, we use it representatively
to explain the simulation concept. We then describe StubDroid, a program that creates summaries specifically
for taint analyses (Section 3.2). In Section 3.3, we give details about Droidel, an approach that enables static
analyses to analyse the behavior of Android libraries rather than abstracting the functionality away. Further, we
explain the concepts behind Window Transition Graphs (WTGs) created with GATOR (Section 3.4).

3.1 FlowDroid

FlowDroid is a state of the art, precise context, flow, field, object-sensitive and lifecycle-aware static analysis
tool for Android apps. The analysis perfomed by FlowDroid is called taint analysis. A taint analysis tries to
identify sensitive data flows in apps that are potentially malicious or violate a policy. For example, suppose a
malicious app accesses a privacy sensitive field (e.g., the phone number) and sends it to a device controlled by
the attacker via SMS. Assuming the malicious app does not take any precautions to conceal this action from
static analysis, such as loading code dynamically with reflection, FlowDroid will report this data flow. Often,
sensitive data flows are not implemented intentionally. This can happen, for instance, when developers incor-
porate advertisement libraries in their apps [36]. That is, if the library is not transparent in terms of sensitive
data usage, the developer will unknowingly accomodate code in their app that leaks sensitive information.

Taint analysis is based on the concept of sources and sinks. To find sensitive data flows, the meaning of sensitive
data and how it is identified must be defined first. Sources are statements that unconditionally cause a variable
to become tainted, meaning that the variable carries sensitive data. Since Android protects sensitive data with
permissions, it makes sense to define all API invocations that require permissions as sources. Nevertheless, it
is not trivial to define an accurate set of sources in a sense that each potential privacy breach is found. For
instance, previous work has shown that public Android resources (i.e., resources that are accessible without,
or with commonly used permissions) can be used to infer privacy sensitive data [37, 38]. Sinks are predefined
statements, such as an invocation statement of the API method to send a SMS, that will trigger a taint analysis
to report a violation in case a tainted value is involved. FlowDroid provides a sample list of sources and sinks
to perform a taint analysis. The analysis itself looks for data flows that lead from sources to sinks and reports
all pairs of sources and sinks with at least one connection.

An example for a malicious data flow is depicted in Listing 1.1. In the user-defined method onCreate(),
the device’s IMEI is stored in the field imei (line 9). Since the IMEI is a privacy sensitive value be-
cause it uniquely identifies a mobile phone, FlowDroid defines statements that store the return value
of <TelephonyManager: String getDeviceId()> as sources. A sink is located in the method
sendMessage(). This method first requests the SmsManager from the Android system and then sends the
IMEI via SMS to a chosen phone number (line 15). Note that the method sendMessage() is never explicitly
called in the application code. Instead, it is a callback handler invoked by the library when a button in the
applicatio nis clicked. Also, the callback handler was not registered in the application code but in a layout XML
file. Therefore, in order to find a flow from the sink to the source, FlowDroid must recognize that the method
sendMessage() is potentially called during runtime.

We now explain how FlowDroid deals with Android specific challenges. In order to be compatible with
existing call graph construction algorithms, FlowDroid generates a dummy main method which serves as
a main entry point. FlowDroid creates application-specific dummy main methods to precisely encode the
application-defined methods that are called back by the Android framework. The method body of the dummy

15

Figure 3.1: Control flow of the dummy main method, reproduced from [1]

main method simulates the lifecycles of all components (see Section 2.1) that are present in the app. Com-
ponents are found by parsing the Android manifest. Figure 3.1 exemplary illustrates the Control Flow Graph
(CFG) of a dummy main method. For the sake of simplicity, the app consists of a single component, namely
an activity called LeakageApp. FlowDroid analyzes the code of all components to learn about implemented
lifecycle methods. As can be seen from the provided CFG, FlowDroid explicitly invokes all lifecycle methods
that an activity defines (see Section 2.1) because the class LeakageApp implements all lifecycle methods (the
code itself is not shown). To achieve higher precision, FlowDroid sequences lifecycle callbacks in accordance
with the Android documentation (see Figure 2.3). For that matter, FlowDroid inserts opaque if statements
(depicted by the rhombuses with p in Figure 3.1) in the dummy main method. Opaque means that the condition
cannot be evaluated statically. These statements ensure that a flow-sensitive static analysis can consider all
possible method orderings.

Beyond lifecycle methods, FlowDroid models imperatively and declaratively defined callbacks in the dummy
main method. Callback methods that handle GUI-interaction and notifications are always executed in the
context of the component that registered the callback [1]. More precisely, FlowDroid assumes that callback
handlers can only be invoked when the hosting component is running, i.e. between the methods onResume()
and onPause(). We could confirm this assumption for recent Android versions (API versions 23 and 24)
with manual testing (see Section 4.2). Therefore, FlowDroid only adds call sites for callback handlers that

16

are associated with the respective component to the dummy main method. In the given example (Figure
3.1), the method sendMsg() is registered in LeakageApp. In order to find all callback handlers and their
hosting components, FlowDroid distinguishes between imperatively and declaratively registrations. Details
about associating XML-based callback registrations with a component are given in Section 4.3 as we use the
same approach. Imperatively registered callback handlers are added to the dummy main method by iteratively
constructing call graphs until a fixed point is reached; first, FlowDroid constructs a dummy main method
that merely comprises entry points that are initially reachable, i.e. all lifecycle methods that are defined by the
application. Callback registrations are detected by comparing method signatures with a hardcoded list. If new
registrations are found, FlowDroid will include calls to the appropriate handlers in the dummy main method
and repeat the process. Since callback handlers can register new callbacks, this step is repeated until no new
registrations are found.

After FlowDroid has finished building the dummy main method, it initiates the taint analysis. The details
of the taint analysis are not of further importance for this work, but it is intuitive that FlowDroid is able
to find data flows from sources to sinks with the dummy main method. For example, assume the code from
Listing 1.1. Traversing the CFG of the dummy main method, FlowDroid will find that first the method
onCreate() is called. From analyzing onCreate(), FlowDroid can infer that the field imei is tainted.
Since the application code consists of only two methods, the dummy main method contains only two call
sites. Therefore, the connection from source to sink is found when FlowDroid analyzes the callback handler
sendMessage().

3.2 StubDroid

Performing a taint analysis on a model that merely incorporates application code is insufficient. A sound
analysis must also track information flows through the library. For better understanding, assume a sce-
nario where the source is not leaked directly, but through a taint propagation due to library code.
For example, if the content of the field imei in Listing 1.1 is stored in a library field (e.g., with
Exception ex = new Exception(imei)) after it has been tainted, the client analysis must propa-
gate the taint to the appropriate field or associate the taint with all fields of ex. In order to leak the tainted library
field, the app could call, e.g.,sendTextMessage("+49..", null, ex.getMessage(), null, null).
Technically, the original example already involves a tainted library field because the class String is part of
the library, but we assume that String is a primitive type for the sake of argument.

Taint analyses have different options to cope with library code. A simple approach is to treat library code like
application code, i.e. to analyse the entire code for each target application [39]. This approach achieves high
precision, though it is not scaleable. We have seen earlier that the Android codebase is extensive, hence an
analysis based on this approach will spend most of the time analysing library code. However, most of the library
code is irrelevant for the client analysis which renders this approach highly inefficient. A second option is to
approximate the library behavior by applying general rules for library methods [40]. For example, one of these
rules could state that whenever a library method with at least one tainted parameter is called, the returned
value is assumed to be tainted as well. In comparison to the first approach, this one loses precision due to the
generality of the applied rules.

In its original form, FlowDroid makes use of another approach. The idea is to provide manually created
summaries for a subset of framework methods. FlowDroid refers to these summaries as taint wrappers. Before
FlowDroid analyzes a method for taint propagation, it checks whether a taint wrapper is available for the
given method. In case there is a summary available, FlowDroid performs the taint propagation based on the
summary rather than analyzing the whole method. Taint wrappers are especially efficient for methods and types
that are either referenced frequently or complex to analyse because of deep call chains. Another advantage of
taint wrappers is that they can be used even if a part of the library that needs to be analyzed is missing. However,
taint wrappers also have drawbacks. We mentioned in Section 2.3 that one of the challenges specifically for
analyzing Android apps is the evolution of the Android framework. The main drawback of taint wrappers is
that they require maintenance, potentially for each newly released version. While some framework constructs,
such as the lifecycle of activities, remained unchanged over the course of all Android versions, other parts and
especially the concrete implementation of classes is changed and extended frequently. Since these summaries

17

Figure 3.2: Architecture of StubDroid, reproduced from [18]

are created through manual inspection, this is an unsatisfying solution. In comparison, the approach of defining
general rules to summarize library methods is not required to provide this kind of customization for different
Android versions because it does not depend on the concrete implementation.

A more sophisticated approach for modeling library behavior, specifically for taint analysis, is StubDroid. An
overview of StubDroid’s architecture is illustrated in Figure 3.2. Summaries created by StubDroid are
not application-specific. Therefore, StubDroid requires only the desired library along with the source and
sink specification, i.e. a file that lists what method signatures are considered to be sources, and what signatures
are considered to be sinks. Note that the input library does not have to be an Android library. StubDroid
can create summaries for all Java libraries. It assumes that an app only accesses public library resources, hence
it exclusively computes summaries for public methods. Further, StubDroid cannot make any assumptions
about the state of library fields or call sequences of library methods due to missing knowledge about application
code. For that reason, StubDroid analyzes methods with all potential parameter and field configurations.
StubDroid outputs one file per summary in the XML format and each file represents one library class. This is
beneficial because the summaries are independent of specific client analyses and can be loaded on demand.

In the given example (Figure 3.2), FlowDroid is the client taint analysis. Since StubDroid provides
summaries for each public method, the client analysis does not need the library anymore. Instead, when the
analysis encounters a call site to the library, it can plug in the summary by loading the appropriate XML file
and perform the taint propagation more efficiently. We have seen earlier that FlowDroid incorporates a
proprietary data structure (taint wrappers) to facilitate shortcuts. In order to support summaries created with
StubDroid, FlowDroid simply translates the XML summaries to taint wrappers on demand. In comparison
with manually crafted summaries, StubDroid achieves similar precision while speeding up analysis times
because manually crafted summaries are limited to a subset of library methods. The apps that the authors
of StubDroid examined, were analyzed 15% faster on average with FlowDroid using StubDroid’s
summaries compared to hand-crafted summaries. A downside of StubDroid is the required computation
time for creating summaries, though this merely must be done once per library. The authors measured summary
generation times ranging from 35 to 960 seconds for individual classes.

An advantage of all summary-based models is that, in some cases, they enable an analysis because analyzing
the application together with the library may fail due to exceeding resource demand. Creating summaries
with StubDroid is not very memory-intensive. StubDroid avoids that by analyzing each library method
separately, hence the memory consumption is low in comparison to the taint analysis.

18

3.3 Droidel

Droidel [41] is a more general approach than FlowDroid’s simulation approach, i.e. Droidel does
not target specific client analyses, such as a taint analysis. The authors of Droidel motivate their work by
providing an example app (see Listing 3.3) that is modeled incorrectly by client analyses that incorporate the
simulation approach. The app first instantiates a new AsyncTask (line 5). As the name suggests, objects of
the class AsyncTask perform tasks in the background. Next, a dialog is created which, e.g., could display
to the user that the app is currently logging in (line 6). In order to provide the user the option to abort this
operation, the app registers a new callback handler that cancels the task when the user pushes the hardware
back button (lines 7–11).

Existing simulation-based approaches, such as FlowDroid, create a dummy main method that instantiates
at least two objects for the given example; one that represents the activity LoginActivity o1 and one
that represents the class that implements the interface OnCancelListener. Since the latter class is anony-
mous, we refer to it as LoginActivity.OnCancelListener o2. We have seen in Section 3.1 that
FlowDroid adds method invocations to all lifecycle methods that are overridden by the app. Therefore,
the dummy main correctly calls o1.onCreate(). Regarding the OnCancelListener, the authors of
Droidel claim that simulation-based approaches merely call o2.onCancel() and nothing else. In fact, we
could confirm this behavior for the (as the time of this writing) latest development branch of FlowDroid.

In this case, the framework model created by FlowDroid is unsound. To see this, assume an object-sensitive
points-to analysis on the previously described dummy main method. After the call o1.onCreate() has
been examined, the points-to analysis will find that points-to(o1.mAuthTask) = {MyAsyncTask}
and points-to(o2.mAuthTask) = ;. The points-to set of o2.mAuthTask is empty because of
the object-sensitivity, i.e. the method is analyzed in the context of o1. Since there are no other re-
maining call sites in the dummy main method besides o2.onCancel(), the points-to analysis con-
cludes that o2.mAuthTask can only hold null. This is unsound because when the program is
compiled, LoginActivity.OnCancelListener cannot be instantiated without its enclosing type
LoginActivity, i.e. the anonymous class captures the reference of o1.mAuthTask which is different
from null when o2 is created.

Unsoundness in the call graph can pollute the results of the underlying client analysis. If, for instance, the
abort operation propagates tainted values or leaks a tainted value to a sink, FlowDroid will miss these data
flows which renders the analysis unsound, too. Note that this particular bug could be easily fixed, though the
authors of Droidel claim that they have discovered many more problems. However, they provide only the
one concrete example which we have just presented.

1 class LoginActivity extends Activity {
2 AsyncTask mAuthTask = null;
3
4 @Override void onCreate() {
5 mAuthTask = new MyAsyncTask(...);
6 AlertDialog d = ProgressDialog.create(...);
7 OnCancelListener l = new OnCancelListener() {
8 @Override void onCancel() {
9 mAuthTask.cancel();

10 }};
11 d.setOnCancelListener(l);
12 }
13 }

Listing 3.1: Sample app that is modeled incorrectly by FlowDroid’s dummy main method, reproduced from [41]

19

1 class AppStubs implements DroidelStubs {
2 Activity getActivity(String cls) {
3 if (cls == "ActivityA") {
4 return new ActivityA();
5 } else if (cls == "ActivityB") {
6 return new ActivityB();
7 } else { return new Activity(); }
8 }
9 // Further method implementations

10 [...]
11 }

Listing 3.2: Extract of a DroidelStubs implementation, reproduced from [41]

According to the authors of Droidel, the root cause for the unsoundness in simulation-based models is the
modeling of the framework; the framework is too complex to derive sound and precise models from it. Details of
the library that are abstracted away by static library models might be of importance for call graph construction.
Less precise call graph generation algorithms like CHA mask the particular problem from Listing 3.3, but they
might also be too imprecise to get reasonable results.

Droidel is a different approach that transforms Android apps into a form such that analysis tools for Java
applications can process Android apps. Contrary to the simulation approach, Droidel tries to model as little
framework behavior as possible. The key idea of Droidel is to replace any library code that is hard to handle
for static analyses with more explicit code (explicating). For example, Android instantiates application-defined
components (e.g. activities) with reflection because it is not aware of the class names at compile time. With the
knowledge of application code however, many reflective method invocations in the library can be replaced with
more explicit statements.

In detail, the Android framework instantiates activities with:

Activity act = (Activity) clazz.newInstance();

Droidel replaces this statement with:

Activity act = droidelStubs.getActivity(clazz.getName());

droidelStubs is a reference to a special class created by Droidel. The implementation of this class
is dependent on the application. Similiar to FlowDroid, Droidel parses the application manifest to
learn about components that are implemented by the app. With that information, Droidel can implement
the DroidelStubs interface. A sample implementation of the DroidelStubs interface is depicted in
Listing 3.3. In this case, the application consists of the two activities ActivityA and ActivityB. Depen-
dent on the specified parameter cls, the DroidelStubs implementation returns a new instance of one
of the both application-defined activities or an instance of the super class Activity if cls is unknown.
Therefore, a precise points-to analysis can conclude the runtime type of act by analyzing the code of the
library.

Apart from instantiating activities, the Android framework incorporates reflective calls for more functionality.
For example, Android uses reflection to retrieve UI elements that were defined in layout files. We have seen
earlier that callback handlers can be registered in layout files. This functionality is also implemented with
reflective calls in the library. All of these behaviors are explicated in the DroidelStubs implementation.

Moreover, Droidel modifies the parameter list of the library method ActivityThread.main() which
is the entry point in the Android framework to start an activity. The parameter list is extended such that it
accepts an implementation of the DroidelStubs interface. In order to analyze an app with Droidel,
the application-specific DroidelStubs implementation must be created first. Further, Droidel provides a

20

main entry point for clients analyses. The entry point does not model any library behavior like simulation-based
approaches. Instead, the main entry point merely calls Activitythread.main() with the appropriate
DroidelStubs implementation.

The client analysis can use Droidel’s main entry point for call graph construction. By doing so, the client
analysis effectively traces the entire Android framework for callbacks to the application. Compared to simulation-
based approaches, Droidel achieves enhanced soundness but the call graph construction takes longer. All
of the examined applications (7 total) missed less call graph edges using Droidel compared to a call graph
generated with FlowDroid. FlowDroid missed 30% of the edges on average while Droidel missed 6%
on average. The missing edges were identified by comparing the call graphs to a dynamic instrumentation.
Building call graphs with Droidel is slower by a factor that ranges from 2 to 11, compared to FlowDroid.

3.4 GATOR

GATOR1 is a static program analysis toolkit for Android. The analysis performed by GATOR is very comprehen-
sive which is why we only want to provide a high-level view in this work. A thorough documentation of GATOR
can be found in [42].

The development of the toolkit is motivated by the fact that existing solutions (e.g.,FlowDroid) do not provide
a precise model of potential event and callback sequences as well as potential window transitions that may
occur during runtime. In order to get a more precise handling of these behaviors, the authors of GATOR propose
a model that focuses on the control-flow of GUI elements in Android applications. The key idea is to provide
a data structure—a Window Transtition Graph (WTG)—that represents the GUI semantics during runtime. By
"windows", the authors refer to several GUI elements. All subclasses of android.app.Activity, dialogs
and menus are considered to be windows. Dialogs are interactive popups that are usually closed after the user
provided some input and menus are embedded into activities and consist of multiple items that the user can
click on. This abstraction is made because all of these elements usually contain multiple widgets (e.g., buttons)
that can trigger a change on the window stack, i.e. clicking these widgets can cause that a new window is
opened or an existing window is closed.

The window stack is a generalization of the back stack [43] that keeps track of activities that are currently alive.
Compared to the back stack, the window stack does not merely incorporate activities but all types of windows.
GATOR uses this data structure to model the effects of different callback handlers. When a new window is
opened, it is pushed onto the window stack and whenever a window is closed, an element is popped from the
window stack.

Modeling the effects of callback handlers on the window stack is a complicated task because a single handler
can trigger multiple actions on the window stack. For example, it can happen that multiple active windows
are closed by pressing the hardware back button. Moreover, depending on preceding events, the same callback
handler could have different effects on the window stack. In order to precisely model all potential behaviors,
GATOR performs a context-sensitive analysis. This is required because GUI-based callback handlers receive a
widget as parameter. This parameter is used to determine the widget that has been clicked by the user. A context-
insensitive analysis would conclude that, regardless of the parameter, all statements in the callback handler
might be executed. Since these statements might lead to different chains of callbacks, a context-insensitive
analysis is too imprecise.

In addition to analyzing widget related events, GATOR examines the effects of default events. These events
comprise screen rotation, pressing the hardware back, power, menu, and home button. In essence, GATOR
focuses on analyzing all event handlers that might have an effect on the window stack. Callback sequences of
other components, such as services are not modeled by GATOR.

The output of GATOR is the aforementioned WTG. Client analyses can use this data structure to get precise
control-flow information of GUI-related elements. An example of a WTG is depicted in Figure 3.3. In this case,

1 http://web.cse.ohio-state.edu/presto/software/gator/

21

http://web.cse.ohio-state.edu/presto/software/gator/

Figure 3.3: Window transition graph, reproduced from [33]

the application consists of two activities ChooseFileActivity and OpenFileActivity. When the ap-
plication is launched, the Android framework invokes the lifecycle methods onCreate() and onResume()
of ChooseFileActivity. ChooseFileActivity has a menu that triggers a window transition to
OpenFileActivity when an item is clicked. Since menus and dialogues are also windows, GATOR allo-
cates distinct nodes for dialogues and windows in the WTG. For simplicity, this is not shown in the example.
When the user presses the hardware back button while OpenFileActivity is active, a non-trivial inter-
leaving of callbacks occurs; first, the lifecycle method onPause() of OpenFileActivity is called by
the Android framework. Then a lifecycle method of ChooseFileActivity is invoked (onResume()),
followed by further method invocations on the OpenFileActivity object. While the first transition
(ChooseFileActivity -> OpenFileActivity) and the corresponding sequence of callbacks can
be derived from FlowDroid’s dummy main method, the second one cannot. FlowDroid assumes that life-
cycle methods of ChooseFileActivity will not be invoked until the lifecycle of OpenFileActivity
has ended (i.e., after onDestroy() was called).

A work by S. Yang et al. about WTGs evaluated 20 apps and measured the time to create a WTG for each app
[42]. For 19 of these apps, the WTG could be constructed in under 20 seconds. In one case (FBReader) the
generation took 2086 seconds due to a limitation in their analysis.

There exist some client analyses that incorporate WTGs. The first example is an analysis that tries to spot
energy drain effects caused by Android apps [44]. Unnecessary energy drain can happen when developers
misjudge the control-flow of their app. For example, if an energy-intensive component (e.g., GPS or WiFi) is still
accessed even though it is not needed anymore. Another client analysis focuses on the detection of expensive
operations performed on the GUI-thread [45]. Expensive operations on the GUI-thread can compromise the
responsiveness of an app. In order to provide a good user experience, these operations should be performed on
another thread.

22

3.5 Summary

We have seen three different approaches that model specific behavior of the Android library and one approach
that creates summaries for a specific client analysis. An important observation is that none of the approaches is
fully comprehensive. Given the complexity of the Android framework, most approaches try to focus on modeling
the parts of the library that are most important for the intended client analysis. Droidel is the most general
approach and does not focus on a specific client analysis. In order to stay general, Droidel provides an entry
point and a custom Android library that explicates a subset of reflection uses, such that clients analyses can
create a call graph by analyzing the library. There are multiple drawbacks with that approach; the customized
library was created with manual inspection, i.e. new framework versions require manual efforts to be compatible
with Droidel. Further, Droidel does not explicate all uses of reflection in the Android library. The biggest
drawback, however, is that an analysis of the whole program is expensive and slows down client analyses.
FlowDroid creates a static model that simulates the lifecycles of components and other callbacks from the
library. The design is based on manual investigation of the framework, i.e. the model might require adjustments
for newer versions of Android. Also, we have seen that this model yields soundness issues. StubDroid
provides library summaries that generally improve analysis times. These summaries are specifically designed
for client taint analyses. Creating these summaries is costly, though it is a one-time effort per library version.
GATOR focuses on modeling precisely the control-flow of GUIs. Currently, there exist only a few client analyses
that use WTGs. Although WTGs achieve good precision, it is questionable whether this data structure is useful
for a broader scope of client analyses because the abstraction lacks important information, such as callback
modeling of components other than activities.

23

4 Implementation

This chapter is divided into three parts: First, we specify the requirements of AveDroid. We then provide a
high-level view of the workflow and conclude this chapter by giving details about the concrete implementa-
tion.

4.1 Requirements

Currently, Averroes can create replacement libraries for Java applications. We extend Averroes such that
it is capable of creating replacement libraries for Android applications. In Section 2.3 we presented challenges
for static analyses. In this work, we focus on dealing with a subset of Android specific challenges (see Section
2.3). ICC is not in the scope of this work. As a consequence, we do not model potential side effects of intra-
app communication. That also means that we model single applications only, i.e. flows between different
applications are not considered in this work.

To summarize, AveDroid has the following requirements:

(i) Users should be able to input an Android application (APK) along with the necessary libraries that the
application depends on.

(ii) AveDroid should be able to process Dalvik bytecode to access the app’s resources.

(iii) AveDroid should be able to parse XML files to find metadata and XML-based callbacks.

(iv) AveDroid should provide a main entry point for static analyses.

(v) AveDroid should model the lifecycle of Android components.

(vi) AveDroid should create a replacement library that has the same structure as a replacement library
created with Averroes (see Section 2.4). That means, the replacement library should only comprise
directly referenced methods and fields, a doItAll() method that models all possible library behaviors,
etc. Addtionally it should also facilitate functionality which models the properties listed in (iii)–(v).

(vii) AveDroid validates and outputs the replacement library for the user. The user can then use the library
to perform static analyses for the respective app.

4.2 Design

Figure 4.1 illustrates the general workflow of AveDroid creating a placeholder library. AveDroid creates
placeholder libraries that are tailored for specific apps. Hence, it is required that a user provides an app along
with the Android library the app was compiled with as well as any external libraries the app depends on. We
create application-specific libraries because we aim for an efficient placeholder library, i.e., so we can examine
what parts of the original library are used by the app and remove any unnecessary parts.

In the first step, we ensure that the resources we need to build the placeholder library can be accessed easily.
The Android library and external libraries are jar archives containing class files and the Android application is an
APK archive containing a dex file and other resources (see Section 2.1). All resources of interest (except for the
AndroidManifest.xml) are passed to AveDroid in the form of bytecode, i.e. if a resource is required,
we transform that resource to a representation that is easier accessible. After the transformation, all classes can

24

Figure 4.1: AveDroid design

be accessed interchangeably regardless of the source file. Next, we collect all components and their lifecycle
methods that are implemented by the application. As we pointed out in Section 2.1, apps are composed of
different components (activities, services, broadcast receivers and content providers). Each of these components
has a distinct lifecycle that we simulate in the replacement library. The idea behind simulating the lifecycle is to
have a method (dummy main method) that instantiates all components present in the application and invokes
all lifecycle methods with appropriate control-flow constraints (see Section 3.1). Since components and their
lifecycles are being started dependent on the user interacting with the GUI, we cannot determine their order
statically. The control-flow constraints ensure that we safely over-approximate all possible orders [1]. Note
that the order of individual lifecycles is encoded precisely by this approach [1, 18] because the sequence in
which the Android framework invokes lifecycle methods of individual components is well known (see Section
2.1). Alternatively, we could have used Droidel’s explicating approach (see Section 3.3). In fact, the explicating
approach is closer to a sound call graph (i.e., call graphs lack less edges in general) than the simulation approach
[41], however the explicating approach does not fit our requirements. Similar to Averroes, AveDroid aims
for efficiency, i.e. we want to keep the overhead of the replacement library as low as possible. On the other
hand, the authors of Droidel propose the contrary: model as little framework behavior as possible. That is,
a client using Droidel analyzes the library to reason about the control-flow of an app. While this approach
is more natural because it eliminates assumptions about the library that can lead to unsound results, it also
hinders the idea of abstracting away library functionality to improve analyses in terms of runtime and memory
consumption.

25

In addition to lifecycle methods, we also model other callbacks in the dummy main method. As we pointed out in
Section 2.1, Android facilitates two ways for an app to register callback handlers; imperatively, by calling the ap-
propriate system method and declaratively, by using XML files. Regarding XML-based callback handlers, we need
to make sure that (1) the class declaring the callback registration method (e.g. android.widget.Button)
will be present in the replacement library, and (2) the matching activity is identified correctly (see Section 2.3).
Callback handler registrations in XML files might reference classes that are never referenced by the application
code itself. However, such classes might be of importance for a client analysis and since we aim to include only
library classes in the replacement library that are directly referenced by the application (explained later), we
provide special treatment for such classes (see Section 4.3). In order to find callback handlers that are registered
in a XML file, we need to find a mapping between activities and their respective layout XML file. XML files do
not contain any information that associate the XML file with an activity class. Thus, we exercise an algorithm
of FlowDroid that analyzes activities for a certain method invocation (see Section 4.3).

With all this information gathered we can now create the dummy main method. Our dummy main method
has a similar structure to FlowDroid’s dummy main method (see Section 3.1). The difference is that we
use a more general and lightweight, albeit less precise approach to identify and model imperatively defined
callback handlers. As we have seen in Section 3.1, FlowDroid iteratively creates call graphs from lifecycle
methods to find callback handler registrations. Registrations themselves are identified by a manually created
list that contains the signatures of all listener interfaces. The advantage of this approach is precision; the list of
signatures ensures that irrelevant methods (e.g. <java.lang.Object hashCode()>) are not identified
as callbacks and the resulting call graphs allow to map the callback handler registrations to an activity. The
latter information is useful since callbacks can only be invoked in the context of the activity that registered
the callback handler [1]. We do not adopt this concept because constructing multiple call graphs is costly and
the list of callbacks needs to be maintained as new Android versions are released. Instead, we use the same
approach as Averroes (see Section 2.4), i.e. we identify any method that overrides or implements a library
method as a potential callback target. The tradeoff is that our dummy main method models imperatively defined
callback handlers not as precise as FlowDroid’s dummy main method. In our approach, these methods can
be called by the library at any time since we invoke these handlers in the doItAllMethod().

We now discuss when callbacks can be invoked by the Android framework. The authors of FlowDroid make
the assumption that both GUI-related as well as other callback handlers (such as a location update handler)
will only be invoked by the framework when the activity is running (i.e. between the execution of the lifecycle
methods onResume() and onPause()) that defined these handlers [1]. This assumption seems plausible
for GUI-related callback handlers because the user can only interact with an activity when it is visible and ready
for input. That behavior is also documented by Android [24]. On the other hand, there exists no documentation
(to our best knowledge) for other callback handlers. We undertook manual efforts to get indications whether
this assumption is (still) meaningful. Running an emulated device with Android 7.0 (the latest version as of the
writing of this document), we triggered events during the execution of the lifecycle methods onCreate(),
onStart() and onResume(). According to our observations, all callback handlers are always invoked
between onResume() and onPause(), giving us reason to believe that the assumption is reasonable. Thus,
we add method invocations to all callback handlers between onResume() and onPause(). The order of the
callbacks cannot be statically predicted [1], hence we over-approximate all possible orders by using appropriate
control-flow constraints.

Constructing the placeholder library involves the same steps as we have seen in Section 2.4. The most important
change is the inclusion of the dummy main method in the placeholder library. That is, the placeholder library
now provides an entry point for analysis clients in addition to the library summary node. Apart from the
placeholder library, the user also gets a file named Library.class as output. Technically, this file could be
part of the placeholder library but to provide compatibility with WALA we chose to exclude this file from the
placeholder library. This class is also the place where we encode the dummy main method. Other contents of
that file have been discussed in Section 2.4.

Analyzing An App With AveDroid. Static analyses can use the replacement library in two different ways,
as illustrated by Figure 4.2. Firstly, an analysis can choose to create its own model of the library and use
the placeholder library like a library provided by the Android SDK. An example for this is FlowDroid;
FlowDroid can use the replacement library like a standard Android library without any modifications to the

26

(a) (b)

Figure 4.2: Two types of methods to analyze an Android app with AveDroid: (a) the client analysis provides
a custom entry point and uses the replacement library to get a summary of the Android library.
(b) The client analysis sets the dummy main method in the replacement library as the main entry
point and performs the analysis.

taint analysis. However, in order to construct a call graph with the placeholder library, the analysis client must
ensure that the library points-to field is initialized. The file Library.class provides a static initializer which
initializes the library points-to field, i.e. the analysis client can set the static initializer of Library.class as
an additional entry point. Secondly, an analysis client can use the dummy main method provided by AveDroid
to initiate call graph construction. In order to do so, the analysis sets the dummy main method inside the class
Library.class as an entry point. Similarly to the other method, the library points-to field can be initialized
with the static initializer of Library.class. With the resulting call graph, the analysis client can proceed
with its default steps.

Limitations. Since our static model of the Android library is very close to FlowDroid’s approach, our approach
has similar limitations. We have seen in Section 3 that the simulation model is not sound. For example, our
model does not encode the interleaving of callback sequences of multiple components (see Section 3.4). In
Section 3.3 we have seen that call graphs derived from the dummy main method miss edges. However, it is not
clear to what extend the soundness of call graphs (derived from the dummy main method) can be improved
by fixing implementation bugs. Although our dummy main method indirectly encodes the most basic use of
ICC, i.e. to start new components, we do not provide means to model data flows via ICC. Further, we do not
provide special means to resolve reflective calls. For Java applications, tools like TamiFlex [35] can be used
to resolve certain kinds of reflection usage, however on the Android platform these tools are not currently
supported. Moreover, our abstraction assumes that the code is executed synchronously, i.e. we do not model
multi-threading.

4.3 Implementation Details

Our implementation is made on top of the static analysis framework Soot. In the first step, we prepare all
resources such that Soot can access all classes. In order to load the class files from the APK file, we exercise
Dexpler [46] which is a submodule of Soot. In addition to loading classes, Dexpler can also transform
classes to Jimple.

When all resources are loaded to Soot, we parse different files to prepare the construction of the dummy main
method. Many parts of this code—including the construction of the dummy main method—are taken from the
implementation of FlowDroid which is open source and available on GitHub1. In detail, we first parse the

1 https://github.com/secure-software-engineering/soot-infoflow-android

27

https://github.com/secure-software-engineering/soot-infoflow-android

application manifest file to find components that are implemented by the application. Further, we parse the
resources.arsc file to learn about mappings between resources and identifiers. At runtime, all Android
and application resources (e.g., layout files) have a distinct identifier.

In order to associate layout files with activities, we look for the call setContentView() in the Jimple code
of activities. The compiled application code invokes this method with an integer which is the identifier of a
layout file. For example, the Jimple code of an activity could contain the following statement:

virtualinvoke $r0.<package.MainActivity: void setContentView(int)>(42)

In this case, the activity MainActivity is associated with the resource identifier 42. From parsing the
resources.arsc file we know what resource is mapped to the identifier 42, therefore we now can associate
this activity with a layout file. As mentioned earlier, we use this association to locate and map callback handlers
that are registered in layout files. Assume that a layout file registers a callback handler myHandler(). In order
to find this handler, we look in the Jimple code of the associated activity for a method with the subsignature
void myHandler(android.view.View).

The second problem we need to solve regarding layout files is that we need to include the classes that define the
callback registration methods (e.g. android.view.Button) in the placeholder library. Since layout files
only contain the class names without package names (e.g. Button), we try to find these class in predefined
package names, such as android.view and android.widget. Each class that is found will be loaded to
Soot and included in the placeholder library.

We then construct the dummy main method. All components of the application are instantiated and for each
component the lifecycle is simulated. By analyzing the Jimple code of implemented components, we can match
predefined method signatures to identify lifecycle methods. The lifecycle methods are then invoked on the
appropriate objects we allocate in the dummy main method. Moreover, we invoke all callback handlers of
components that we have associated with the respective component. As mentioned before, the lifecycles are
simulated in accordance with the official Android documentation, i.e. conditional statements and loops are
added to encode control-flow information.

As we have seen in Section 2.4, Averroes processes the constant pool of class files to find method and field
references from the application to the library. Android applications have a different constant pool organization,
i.e. we had to adjust this algorithm. Figure 4.3 depicts the constant pools of a Java class and a Dalvik dex file.
While each Java class file has a distinct constant pool, Android applications have a shared constant pool. The
benefit of a shared constant pool is that references must be defined only once and can be accessed from any
class, hence a shared constant pool requires less space. We observed that shared constant pools of dex files also
contain references from library classes. Since we cannot distinguish between references that are exclusively
used in application classes, our algorithm also includes methods and fields in the replacement library that are
not directly referenced by the application. In order to access the shared constant pool, we use dexlib2, a
plugin of smali [47].

In Section 2.4 we have seen that Averroes encodes callbacks from the library to the application in a single
summary node (doItAll() method). Averroes includes callbacks to all application methods that override
a library method or implement a library interface. This property also applies to the lifecycle methods of
components. Since we invoke all lifecycle methods in the dummy main method, we do not include callbacks to
these methods in the doItAll() method.

In order to verify the integrity of replacement libraries, we exercise BCEL [48], a Java bytecode analysis tool.
The dummy main method contains references to classes of the Android application. Without the referenced Java
class files, BCEL cannot verify the code because BCEL does not support class loading from dex files. Therefore,
our solution requires the user to provide a jar file with all application classes. Jar files that contain all classes of
an Android app can be obtained by a converter, such as dex2jar2.

2 https://github.com/pxb1988/dex2jar

28

https://github.com/pxb1988/dex2jar

Class file Dex file

Figure 4.3: Dalvik dex and Java class file, reproduced from [49]

29

5 Evaluation

In this chapter, we present the results of the experiments we have run. On the one hand, we have created a
tool that summarizes library behavior with regards to call graph construction, i.e. the summaries do not target
specific client analyses. Therefore, we are interested in comparing the precision of call graphs created with
replacement libraries and original libraries. On the other hand, our static model of the Android library is close to
FlowDroid’s model, and hence we are also interested in comparing the results of FlowDroid running with
original Android libraries and replacement libraries. To summarize, we want to answer the following questions
in this chapter:

• Can FlowDroid find data flows in conjunction with replacement libraries?

• How do replacement libraries scale in the context of taint analysis with FlowDroid?

• How do call graphs created with AveDroid compare to call graphs created with FlowDroid?

5.1 DroidBench

DroidBench is a by-product of FlowDroid that was developed to evaluate the precision and soundness of
client taint analyses for Android. There exist other benchmark suites like SecuriBench [50] that consist of
applications with information leaks. However, these benchmark suites were designed for Java client analyses
and therefore do not incorporate test cases that consider Android specific challenges, such as XML-based callback
registrations or component lifecycles. On the other hand, DroidBench was specifically developed for Android
taint analyses and comprises test cases for Java language specifics, such as taint propagations through arrays
and fields as well as test cases for Android specifics, such as taint propagation through XML-based callback
handlers and ICC. The entire DroidBench test suite is open-source and available on GitHub1.

Test Setup. In order to perform the tests, we first computed the placeholder library for each tested application.
We then ran FlowDroid on the test cases—one time with a standard Android library and one time with the
appropriate placeholder libraries. In particular, we utilized an Android implementation from a real device2

because Android SDK libraries are not ideal for static analysis (see Section 2.1). Since we do not provide special
handling for ICC information flows, we merely test the applications that propagate flows through callback
methods. All apps that are part of the callbacks tests were compiled with Android 4.2 (API version 17) except
one which was compiled with Android 4.4 (API version 19). We left the latter app out because we do not have
a real device implementation of Android 4.4.

Table 5.1 depicts the results of the tests we ran. The first column lists the names of the test cases. Under Android
Library (AL), we report the maximum memory usage of the taint analysis and show whether the test case passes
(Ø) or fails (7) using a standard Android library. The third column, Placeholder Libraries (PL), shows the same
data with respect to placeholder libraries. In general, the test apps are rather small and contain less than a
dozen application methods. For example, the first app, LocationLeak1, implements two activity lifecycle
methods and one listener interface to get location updates from the GPS. A benefit of these small applications
is that we know the ground truth, i.e. in real-world applications it is not always clear what information flows
should be detected or it requires a lot of manual effort to find all leaks.

The results show that placeholder libraries from AveDroid are suited for finding tainted data flows with
FlowDroid. In all test cases we receive the same results in terms of sensitive information flows independent
of the library we used. One test case (Unregister1) fails with both libraries because FlowDroid does not

1 https://github.com/secure-software-engineering/DroidBench
2 https://github.com/Sable/android-platforms

30

https://github.com/secure-software-engineering/DroidBench
https://github.com/Sable/android-platforms

Test Case AL (Memory, Pass/Fail) PL (Memory, Pass/Fail)
LocationLeak1 168 MB Ø 114 MB Ø
LocationLeak2 191 MB Ø 86 MB Ø
LocationLeak3 213 MB Ø 70 MB Ø
MultiHandlers1 191 MB Ø 142 MB Ø
AnonymousClass1 133 MB Ø 79 MB Ø
TestOrdering1 182 MB Ø 98 MB Ø
Unregister1 239 MB 7 140 MB 7

Button1 179 MB Ø 61 MB Ø
Button2 194 MB Ø 106 MB Ø
Button3 283 MB Ø 176 MB Ø
Button4 170 MB Ø 61 MB Ø
MethodOverride1 177 MB Ø 60 MB Ø
RegisterGlobal1 192 MB Ø 77 MB Ø
RegisterGlobal2 167 MB Ø 154 MB Ø

Table 5.1: DroidBench test results

detect "unregistered" callback handlers that are not reachable during runtime. Moreover, the presented data
shows that placeholder libraries perform efficiently with small applications. All taint analyses require up to 3
times less memory using placeholder libraries compared to the Android device library. Regardless of the library,
we observed that memory consumption can vary by up to 40% on different runs. Further, we observed that, on
average, execution times are 20% faster using replacement libraries.

5.2 Scalability

In order to test the scalability of replacement libraries, we compared results of FlowDroid running on real-
world applications. Similar to the other tests, we computed the replacement libraries for the applications and
ran FlowDroid with a standard Android library and appropriate replacement libraries. We ran all experiments
on a Debian3 virtual machine (VM). The VM was set up on an Intel Core i5-2500k and 8 GB RAM. We used a
64-bit JVM with a maximum heap size of 3.5 GB.

When we were looking for suitable applications, we faced some difficulties. Since Android 4.2 is the latest
Android version we could find a real device implementation for, we were looking only for applications that
were compiled with this version. However, most app stores do not list the Android version a specific app was
compiled with, but rather the minimum version that is required to install the app on a device. Newer Android
versions usually contain classes that are not available in older versions. FlowDroid can compute results in
these cases by using phantom references, a Soot internal representation of classes that are unavailable for the
analysis. Missing classes could influence the analysis’ results however, thus it is unsound to utilize phantom
references. Moreover, AveDroid expects the user to provide all referenced classes, otherwise the replacement
library cannot be created. This includes any application dependencies. We observed that many apps incorporate
additional libraries, such as Google APIs4, Apache Commons5, etc. in their apps. Therefore, it is cumbersome to
analyze apps since we must obtain all dependencies first.

Table 5.2 illustrates the results of our scaling experiments. Under Application, we list the names of applications
we examined. The second column, Methods, approximates the number of application methods. In particular,
we looked at packages x that contain at least one registered application component. We count all methods as
application methods for which the following two properties apply: (1) the method is located in a class that
resides in x or a subpackage of x. (2) The method has a reference in the constant pool. This procedure is
only an approximation because many developers include components of extensive libraries (e.g., advertisement

3 https://www.debian.org/
4 https://developers.google.com/api-client-library/
5 https://commons.apache.org/

31

https://www.debian.org/
https://developers.google.com/api-client-library/
https://commons.apache.org/

Application Methods Android Library Placeholder Library6

RAM
(MB)

Time
(s)

RAM
(MB)

Time
(s)

Points-to

Button1 5 179 7 61 5 463
PDFViewer 450 330 23 314 21 799

Drupal 433 7 7 430 29 1,080
SonyNotes 1,447 427 42 811 70 1,733

WeatherFlow 2,161 482 36 7 7 2,696
TVPortal 8,701 1,630 141 7 7 3,428

Table 5.2: Placeholder library scaling

libraries) in their application. Moreover, the number of methods is of limited use when describing the application
size due to varying method complexity. Under Android Library and Placeholder Library, we report the maximum
memory usage and runtime of the taint analysis with FlowDroid. In the case of placeholder libraries, we
additionally report the size of the library points-to set (see Section 2.4). For reference, we also included the
application Button1 from the DroidBench benchmark suite. The symbol "7" means that the analysis timed
out.

We observed that none of the real-world applications could be analyzed with FlowDroid using replacement
libraries without modifications. That is, when we executed FlowDroidwith replacement libraries, the analysis
ran out of memory. We found that the class java.lang.ObjectAVE (i.e., the class java.lang.Object
with AveDroid stub implementations) is the reason for the exponentially increasing demand of resources
in some cases. In order to obtain results, we decided to replace the class java.lang.ObjectAVE with the
implementation of a standard Android library. The particular reason for the increasing demand of resources
remains unclear, though we ruled out that java.lang.ObjectAVE leads to a significant increase of the
library points-to set. For example, in the case of APVPDFViewer, the library points-to set had 71 more elements
(i.e. 870, instead of 799) using java.lang.ObjectAVE. In the case of Drupal, the library points-to set had
250 more elements (i.e. 1,330, instead of 1,080). For the DroidBench test apps, we did not modify the
placeholder libraries.

The results show that AveDroid’s placeholder libraries perform slightly better than the device library for
smaller applications. For Drupal, the appropriate replacement library even enables the analysis. We did not find
any indications that could explain why FlowDroid times out when analyzing Drupal with the device library.
According to our results, replacement libraries require exponentially more memory starting from a certain
application size. While SonyNotes still works with the placeholder library, the analysis also requires twice as
much resources compared to the device library. Regarding the two largest applications we examined, we suspect
that the library points-to sets have too many elements for an efficient analysis.

5.3 Call Graph Comparison

We have seen in chapter 3 that call graphs derived from FlowDroid’s dummy main method are unsound.
Therefore, it is impossible to use these call graphs to infer soundness of other call graphs. Due to static analysis
challenges (see Section 2.3), static call graphs are not sound in general. In order to determine the degree
of unsoundness of static call graphs, it is a common approach to compare them to dynamic call graphs. A
dynamic call graph can be obtained by running the program on a device and logging all methods that are
visited. Dynamic call graphs comprise only methods of a specific run, thus they are unsound in general as well.
However, if a call edge of a dynamic call graph is not present in the static call graph, it can be concluded that
the static call graph is unsound with respect to that call edge.

6 With the exception of the placeholder library for the app Button1, the class java.lang.Object was replaced in all placeholder
libraries with an implementation of a standard Android library.

32

Application Dynamic C. SPARKFLOW SPARKAVE

Unsound edges
(dynamic)

Edges
(total)

Unsound edges
(FlowDroid)

Spurious edges
(FlowDroid)

Button1 60% 0 6 0 0
PDFViewer 5% 0 686 7 22

Drupal 14% 0 574 8 59
SonyNotes 7 7 1,599 42 252

WeatherFlow 7 7 1,393 87 340
TVPortal 9% 0 5,560 650 431

Table 5.3: Application-only call graph comparison

Tracedroid [51] is a tool that generates dynamic traces of Android applications. To run applications,
Tracedroid uses an Android emulator that runs on a modified Android OS to log method invocations.
The tool performs the analysis automatically by simulating user input with Monkey Exerciser [52] and other
events, such as incoming network traffic and low battery status. We exercise Tracedroid to construct a dy-
namic call graph for each tested application, i.e. we parse the dynamic trace and convert it to a representation
that is comparable to static call graphs.

Furthermore, we computed two static call graphs with SPARK for each tested application. First, we constructed
a call graph derived from the dummy main method that we generated with FlowDroid. This call graph is
built in conjunction with an Android 4.2 device library. The second call graph is based on the appropriate
placeholder library, i.e. the placeholder library as well as its entry point is used to construct this call graph. Both
call graph analyses are field-sensitive, array-insensitive, flow-insensitive, and context-insensitive.

Table 5.3 compares the application-only call graphs, i.e. call edges that connect two library methods are not
considered in our experiments. We analyzed the same applications as in Section 5.2, as listed in the first column.
Under the second column, Dynamic Coverage, we report the relative amount of application methods that were
visited by the dynamic instrumentation with Tracedroid. The third column, SPARKFLOW, lists the number
of unsound call edges with respect to the dynamic call graph and the amount of call edges present in the call
graph that is derived from FlowDroid’s dummy main method. Under SPARKAVE, we report the number of
unsound call edges as well as the number of spurious call edges with respect to the call graph generated with
FlowDroid. Although this comparison is not ideal, the code coverage of the dynamic analysis is too low to
infer soundness of other call graphs. From the low application code coverage we conclude that automated
dynamic instrumentation is not suitable for Android applications. In two cases, SonyNotes and Weatherflow, we
could not obtain a dynamic call graph because Tracedroid failed to install the app on the emulator.

SPARKAVE has approximately 10% or less spurious call edges in 4 of the 6 tested applications with respect to the
total amount of call edges in SPARKFLOW. We count every call edge as spurious that is contained in SPARKAVE
and absent in SPARKFLOW. Since SPARKFLOW is unsound, call edges that we identify as spurious in SPARKAVE
might be unsound call edges in SPARKFLOW. For example, we found that approximately 50% of the spurious
call edges in WeatherFlow originate from, or target a fragment. Fragments are sub-components of activities that
are not supported by FlowDroid. Although we did not confirm this through dynamic instrumentation, we
suspect that some of these call edges are sound. We consider all missing call edges of SPARKAVE unsound that
are present in SPARKFLOW. For example, we observed that some call edges from callback handlers to the library
are missing in SPARKAVE. In the case of TvPortal, SPARKAVE misses call edges from and to entire classes. The
reasons for this unsoundness remain unclear and are left for future work.

33

6 Related Work

In Chapter 3, we have seen a few closely-related works in more depth. These works will not be discussed here.
In this chapter, we summarize further works that create static models of the Android framework as well as
works that create pre-computed summaries of Android libraries.

6.1 Static Models of the Android Library

Similar to FlowDroid, ScanDroid [53] performs an information-flow analysis on Android applica-
tions. ScanDroid’s analysis scope is broader than FlowDroid’s approach by supporting intra- and inter-
application communication. The analysis is less precise because ScanDroid does not craft a special entry
point that simulates the lifecycle, but instead connects call graphs from multiple entry points. ScanDroid
also provides hand-crafted summaries of specific library methods to reduce analysis times.

IccTA [8] is a client taint analysis that extends the functionality of FlowDroid. It combines the analysis of
FlowDroid with Epicc [9]. Epicc is a tool to analyze intra- and inter-application communication. IccTA
builds a dummy main method with a modified version of FlowDroid and facilitates the ICC data obtained
with Epicc in its analysis.

DroidSafe [54] is also an information-flow analysis tool that incorporates ICC information in its analy-
ses. The static abstraction is based on a proprietary AOSP library which contains summaries for native code.
These summaries are specifically designed for client taint and points-to analyses. Similar to FlowDroid,
DroidSafe crafts a main entry point (harness) to simulate the lifecycles of application components.

Smartdroid [55] focuses similarly to GATOR on GUI components of Android apps. It utilizes static and
dynamic analysis techniques to find method invocations of sensitive library methods. Their static model aims
to abstract the call hierarchy of activities, i.e. starting from the main activity, Smartdroid tries to find all
activities that can be invoked within the current activity.

6.2 Android Library Summaries

EdgeMiner [56] is an analysis tool that creates application-independent summaries of implicit control-flows
(callbacks) for Android libraries. It analyzes the whole Android library to find all registration-callback pairs.
Computed summaries by EdgeMiner encapsulate all callback methods that might be invoked by library
methods. Existing client taint analyses like FlowDroid can leverage this information to improve callback
handling.

A work by D. Perez and W. Le [57] proposes a similar approach. Their tool, Lithium, performs an analysis
of the Android framework that summarizes callbacks of Android API methods. Compared to EdgeMiner,
Lithium is more expressive because it also captures control flow information of callbacks, though the analysis
is also more expensive. Edgeminer and Lithium create more precise summaries than our approach because
we provide only one summary node that over-approximates all potential callbacks.

34

7 Conclusion and Future Work

In this thesis, we have presented and evaluated AveDroid, a tool that creates replacement libraries for
Android applications. We have seen that modeling the Android framework is challenging and unsound in
general. Therefore, existing approaches focus on modeling the parts of the Android library that are important
for the respective client analysis. Our static model of the Android library is akin to FlowDroid’s model, thus
we have similar limitations. Further, we have evaluated that placeholder libraries enable an efficient taint
analysis with FlowDroid up to a certain application size. With increasing application size, the taint analysis
needs exponentially more resources.

By comparing call graphs, we have found that call graphs derived from our model miss sound call edges present
in call graphs derived from a dummy main method that was created with FlowDroid. Therefore, we suggest
that the first step for future work should be to clarify the reasons for the unsoundness in our model. Moreover,
our model has limitations, such as missing handling for ICC, reflection, and native methods. While all these
limitations lead to unsoundness in call graph construction, we think that supporting ICC should be one of the
next steps since static models of other approaches could potentially be adopted in order to cope with ICC.

35

Declaration of Academic Integrity

Thesis Statement pursuant to § 22 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I have written the submitted thesis independently. I did not use any outside
support except for the quoted literature and other sources mentioned in the paper. I clearly marked and
separately listed all of the literature and all of the other sources which I employed when producing this academic
work, either literally or in content. This thesis has not been handed in or published before in the same or similar
form.
In the submitted thesis the written copies and the electronic version are identical in content.

Date: Signature:

X

Bibliography

[1] A R Z T, S., R A S T H O F E R, S., F R I T Z, C., B O D D E N, E., B A R T E L, A., K L E I N, J., L E T R A O N, Y., O C T E A U,
D., and M C DA N I E L, P. “Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps”. In: ACM SIGPLAN Notices 49.6 (2014), pp. 259–269.

[2] A L I, K. and L H O T Á K, O. “Averroes: Whole-program analysis without the whole program”. In: European
Conference on Object-Oriented Programming. Springer. 2013, pp. 378–400.

[3] IDC. Smartphone OS market share, 2016 q2. U R L: http : / / www . idc . com / prodserv /
smartphone-os-market-share.jsp (visited on: 09/21/2016).

[4] A P P B R A I N. Number of available applications on Google Play. U R L: http://www.appbrain.com/
stats/number-of-Android-apps (visited on: 10/02/2016).

[5] G DATA. Mobile malware report. U R L: https://file.gdatasoftware.com/web/en/
documents/whitepaper/G_DATA_Mobile_Malware_Report_H1_2016_EN.pdf
(visited on: 10/02/2016).

[6] J O H N S O N, R., WA N G, Z., G A G N O N, C., and S TA V R O U, A. “Analysis of Android applications’ permissions”.
In: Software Security and Reliability Companion (SERE-C), 2012 IEEE Sixth International Conference on.
IEEE. 2012, pp. 45–46.

[7] G I B L E R, C., C R U S S E L L, J., E R I C K S O N, J., and C H E N, H. “AndroidLeaks: automatically detecting po-
tential privacy leaks in Android applications on a large scale”. In: International Conference on Trust and
Trustworthy Computing. Springer. 2012, pp. 291–307.

[8] L I, L., B A R T E L, A., B I S S Y A N D É, T. F., K L E I N, J., L E T R A O N, Y., A R Z T, S., R A S T H O F E R, S., B O D D E N, E.,
O C T E A U, D., and M C DA N I E L, P. “IccTA: Detecting inter-component privacy leaks in Android apps”. In:
Proceedings of the 37th International Conference on Software Engineering-Volume 1. IEEE Press. 2015,
pp. 280–291.

[9] O C T E A U, D., M C DA N I E L, P., J H A, S., B A R T E L, A., B O D D E N, E., K L E I N, J., and L E T R A O N, Y. “Effec-
tive inter-component communication mapping in Android: An essential step towards holistic security
analysis”. In: Presented as part of the 22nd USENIX Security Symposium (USENIX Security 13). 2013,
pp. 543–558.

[10] LU, L., L I, Z., W U, Z., L E E, W., and J I A N G, G. “Chex: statically vetting Android apps for component
hijacking vulnerabilities”. In: Proceedings of the 2012 ACM conference on Computer and communications
security. ACM. 2012, pp. 229–240.

[11] PA Y E T, É. and S P O T O, F. “Static analysis of Android programs”. In: Information and Software Technology
54.11 (2012), pp. 1192–1201.

[12] VA L L É E -R A I, R., G A G N O N, E., H E N D R E N, L., L A M, P., P O M I N V I L L E, P., and S U N D A R E S A N, V. “Opti-
mizing Java bytecode using the Soot framework: Is it feasible?” In: International conference on compiler
construction. Springer. 2000, pp. 18–34.

[13] IBM. T.J. Watson Libraries for Analysis WALA. U R L: http://wala.sourceforge.net (visited on:
10/02/2016).

[14] D E A N, J., G R O V E, D., and C H A M B E R S, C. “Optimization of object-oriented programs using static class
hierarchy analysis”. In: European Conference on Object-Oriented Programming. Springer. 1995, pp. 77–
101.

[15] B A C O N, D. F., W E G M A N, M, and Z A D E C K, K. “Rapid type analysis for C++”. In: Rapport technique
(1996).

[16] S U N D A R E S A N, V., H E N D R E N, L., R A Z A F I M A H E F A, C., VA L L É E -R A I, R., L A M, P., G A G N O N, E., and
G O D I N, C. Practical virtual method call resolution for Java. Vol. 35. 10. ACM, 2000.

[17] L H O T Á K, O. and H E N D R E N, L. “Scaling Java points-to analysis using Spark”. In: International Conference
on Compiler Construction. Springer. 2003, pp. 153–169.

XI

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.appbrain.com/stats/number-of-Android-apps
http://www.appbrain.com/stats/number-of-Android-apps
https://file.gdatasoftware.com/web/en/documents/whitepaper/G_DATA_Mobile_Malware_Report_H1_2016_EN.pdf
https://file.gdatasoftware.com/web/en/documents/whitepaper/G_DATA_Mobile_Malware_Report_H1_2016_EN.pdf
http://wala.sourceforge.net

[18] A R Z T, S. and B O D D E N, E. “StubDroid: automatic inference of precise data-flow summaries for the
Android framework”. In: Proceedings of the 38th International Conference on Software Engineering. ACM.
2016, pp. 725–735.

[19] G O O G L E I N C . Android security overview. U R L: https://source.android.com/security/
(visited on: 10/25/2016).

[20] G O O G L E I N C . Security-Enhanced Linux in Android. U R L: https://source.android.com/
security/selinux/ (visited on: 10/25/2016).

[21] G O O G L E I N C . Requesting Permissions at Run Time. U R L: https://developer.android.com/
training/permissions/requesting.html (visited on: 10/25/2016).

[22] G O O G L E I N C . Intents and Intent Filters. U R L: https://developer.android.com/guide/
components/intents-filters.html (visited on: 10/30/2016).

[23] L I, L., B I S S Y A N D E, T. F.D. A., PA PA D A K I S, M., R A S T H O F E R, S., B A R T E L, A., O C T E A U, D., K L E I N, J.,
and L E T R A O N, Y. Static Analysis of Android Apps: A Systematic Literature Review. Tech. rep. SnT, 2016.

[24] G O O G L E I N C . Activities. U R L: https://developer.android.com/guide/components/
activities.html (visited on: 10/25/2016).

[25] A R Z T, S., R A S T H O F E R, S., and B O D D E N, E. “Instrumenting Android and Java applications as easy as
abc”. In: International Conference on Runtime Verification. Springer. 2013, pp. 364–381.

[26] G O O G L E I N C . Android Open Source Project. U R L: https://source.android.com/ (visited on:
10/30/2016).

[27] A L I, K. “The Separate Compilation Assumption”. PhD thesis. University of Waterloo, 2014.

[28] L I, L., B I S S Y A N D É, T. F., O C T E A U, D., and K L E I N, J. “Droidra: Taming reflection to support whole-
program analysis of Android apps”. In: Proceedings of the 25th International Symposium on Software
Testing and Analysis. ACM. 2016, pp. 318–329.

[29] L I N, C.-M., L I N, J.-H., D O W, C.-R., and W E N, C.-M. “Benchmark dalvik and native code for Android
system”. In: Innovations in Bio-inspired Computing and Applications (IBICA), 2011 Second International
Conference on. IEEE. 2011, pp. 320–323.

[30] S O N, K.-C. and L E E, J.-Y. “The method of Android application speed up by using NDK”. In: 2011 3rd
International Conference on Awareness Science and Technology (iCAST). IEEE. 2011, pp. 382–385.

[31] L E E, S. and J E O N, J. W. “Evaluating performance of Android platform using native C for embedded
systems”. In: Control Automation and Systems (ICCAS), 2010 International Conference on. IEEE. 2010,
pp. 1160–1163.

[32] A F O N S O, V., B I A N C H I, A., F R ATA N T O N I O, Y., D O U P É, A., P O L I N O, M., G E U S, P. de, K R U E G E L, C., and
V I G N A, G. “Going Native: Using a Large-Scale Analysis of Android Apps to Create a Practical Native-Code
Sandboxing Policy”. In: Proceedings of the Annual Symposium on Network and Distributed System Security
(NDSS). 2016.

[33] WA N G, Y., Z H A N G, H., and R O U N T E V, A. “On the unsoundness of static analysis for Android GUIs”.
In: Proceedings of the 5th ACM SIGPLAN International Workshop on State Of the Art in Program Analysis.
ACM. 2016, pp. 18–23.

[34] L A M, P., B O D D E N, E., L H O T Á K, O., and H E N D R E N, L. “The Soot framework for Java program analysis: a
retrospective”. In: Cetus Users and Compiler Infastructure Workshop (CETUS 2011). Vol. 15. 2011, p. 35.

[35] B O D D E N, E., S E W E, A., S I N S C H E K, J., O U E S L AT I, H., and M E Z I N I, M. “Taming Reflection”. In: Interna-
tional Conference on Software Engineering. Vol. 4. 2011, p. 25.

[36] G R A C E, M. C., Z H O U, W., J I A N G, X., and S A D E G H I, A.-R. “Unsafe exposure analysis of mobile in-app
advertisements”. In: Proceedings of the fifth ACM conference on Security and Privacy in Wireless and Mobile
Networks. ACM. 2012, pp. 101–112.

[37] Z H O U, X., D E M E T R I O U, S., H E, D., N A V E E D, M., PA N, X., WA N G, X., G U N T E R, C. A., and N A H R S T E D T,
K. “Identity, location, disease and more: Inferring your secrets from Android public resources”. In:
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security. ACM. 2013,
pp. 1017–1028.

XII

https://source.android.com/security/
https://source.android.com/security/selinux/
https://source.android.com/security/selinux/
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/training/permissions/requesting.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/activities.html
https://developer.android.com/guide/components/activities.html
https://source.android.com/

[38] L I U, X., Z H O U, Z., D I A O, W., L I, Z., and Z H A N G, K. “An Empirical Study on Android for Saving Non-
shared Data on Public Storage”. In: IFIP International Information Security Conference. Springer. 2015,
pp. 542–556.

[39] L O R T Z, S., M A N T E L, H., S TA R O S T I N, A., B Ä H R, T., S C H N E I D E R, D., and W E B E R, A. “Cassandra: To-
wards a certifying app store for Android”. In: Proceedings of the 4th ACM Workshop on Security and
Privacy in Smartphones & Mobile Devices. ACM. 2014, pp. 93–104.

[40] H U A N G, W., D O N G, Y., M I L A N O VA, A., and D O L B Y, J. “Scalable and precise taint analysis for Android”.
In: Proceedings of the 2015 International Symposium on Software Testing and Analysis. ACM. 2015,
pp. 106–117.

[41] B L A C K S H E A R, S., G E N D R E A U, A., and C H A N G, B.-Y. E. “Droidel: A general approach to Android frame-
work modeling”. In: Proceedings of the 4th ACM SIGPLAN International Workshop on State Of the Art in
Program Analysis. ACM. 2015, pp. 19–25.

[42] YA N G, S., Z H A N G, H., W U, H., WA N G, Y., YA N, D., and R O U N T E V, A. “Static Window Transition
Graphs for Android (T)”. In: Automated Software Engineering (ASE), 2015 30th IEEE/ACM International
Conference on. IEEE. 2015, pp. 658–668.

[43] G O O G L E I N C . Tasks and a Back Stack. U R L: https://developer.android.com/guide/
components/tasks-and-back-stack.html (visited on: 11/29/2016).

[44] W U, H., YA N G, S., and R O U N T E V, A. “Static Detection of Energy Defect Patterns in Android Applications”.
In: International Conference on Compiler Construction. 2016, pp. 185–195.

[45] WA N G, Y. and R O U N T E V, A. “Profiling the Responsiveness of Android Applications via Automated
Resource Amplification”. In: IEEE/ACM International Conference on Mobile Software Engineering and
Systems. 2016, pp. 48–58.

[46] B A R T E L, A., K L E I N, J., L E T R A O N, Y., and M O N P E R R U S, M. “Dexpler: converting Android dalvik
bytecode to Jimple for static analysis with Soot”. In: Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program analysis. ACM. 2012, pp. 27–38.

[47] F R E K E, J. Smali, an assembler/disassembler for Android’s dex format. https://github.com/
JesusFreke/smali. 2013.

[48] DA H M, M., Z Y L, J van, and H A A S E, E. The bytecode engineering library (BCEL). 2003.

[49] B A R T E L, A. “Security Analysis of Permission-Based Systems using Static Analysis: An Application to the
Android Stack”. PhD thesis. University of Luxembourg, Luxembourg, 2014.

[50] B E N L I V S H I T S . Stanford SecuriBench Micro. U R L: http://suif.stanford.edu/~livshits/
work/securibench-micro/ (visited on: 12/05/2016).

[51] VA N D E R V E E N, V., B O S, H., and R O S S O W, C. “Dynamic analysis of Android malware”. In: Internet &
Web Technology Master thesis, VU University Amsterdam (2013).

[52] G O O G L E I N C . UI/Application Exerciser Monkey. U R L: https://developer.android.com/
studio/test/monkey.html (visited on: 12/05/2016).

[53] F U C H S, A. P., C H A U D H U R I, A., and F O S T E R, J. S. “SCanDroid: Automated security certification of
Android applications”. In: University of Maryland, Tech. Rep. CS-TR-4991 (2009).

[54] G O R D O N, M. I., K I M, D., P E R K I N S, J. H., G I L H A M, L., N G U Y E N, N., and R I N A R D, M. C. “Information
Flow Analysis of Android Applications in DroidSafe.” In: NDSS. Citeseer. 2015.

[55] Z H E N G, C., Z H U, S., DA I, S., G U, G., G O N G, X., H A N, X., and Z O U, W. “Smartdroid: an automatic
system for revealing ui-based trigger conditions in Android applications”. In: Proceedings of the second
ACM workshop on Security and privacy in smartphones and mobile devices. ACM. 2012, pp. 93–104.

[56] CA O, Y., F R ATA N T O N I O, Y., B I A N C H I, A., E G E L E, M., K R U E G E L, C., V I G N A, G., and C H E N, Y. “EdgeM-
iner: Automatically Detecting Implicit Control Flow Transitions through the Android Framework.” In:
NDSS. 2015.

[57] P E R E Z, D. D. and L E, W. Summarizing Control Flow of Callbacks for Android API Methods. http:
//web.cs.iastate.edu/~weile/docs/dominguez_techreport1603.pdf. Technical
Report, Iowa State University. 2016.

XIII

https://developer.android.com/guide/components/tasks-and-back-stack.html
https://developer.android.com/guide/components/tasks-and-back-stack.html
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
http://suif.stanford.edu/~livshits/work/securibench-micro/
http://suif.stanford.edu/~livshits/work/securibench-micro/
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
http://web.cs.iastate.edu/~weile/docs/dominguez_techreport1603.pdf
http://web.cs.iastate.edu/~weile/docs/dominguez_techreport1603.pdf

	Titelseite
	Impressum
	Inhaltsverzeichnis
	Introduction
	Motivational Example
	Contribution and Outline

	Background
	Android
	Architecture
	Applications

	Call Graph Construction
	Challenges
	Java Inherited Challenges
	Android Specific Challenges

	Averroes

	Existing Approaches
	FlowDroid
	StubDroid
	Droidel
	GATOR
	Summary

	Implementation
	Requirements
	Design
	Implementation Details

	Evaluation
	DroidBench
	Scalability
	Call Graph Comparison

	Related Work
	Static Models of the Android Library
	Android Library Summaries

	Conclusion and Future Work

