
SWAN: A Static Analysis Framework for Swift
Daniil Tiganov

University of Alberta
Edmonton, Alberta, Canada

tiganov@ualberta.ca

Jeff Cho
University of Alberta

Edmonton, Alberta, Canada
jeff.cho@ualberta.ca

Karim Ali
University of Alberta

Edmonton, Alberta, Canada
karim.ali@ualberta.ca

Julian Dolby
IBM Research

Yorktown Heights, NY, USA
dolby@us.ibm.com

ABSTRACT
Swift is an open-source programming language and Apple’s recom-
mended choice for app development. Given the global widespread
use of Apple devices, the ability to analyze Swift programs has
significant impact on millions of users. Although static analysis
frameworks exist for various computing platforms, there is a lack of
comparable tools for Swift. While LLVM and Clang support some
analyses for Swift, they are either primarily dynamic analyses or
not suitable for deeper analyses of Swift programs such as taint
tracking. Moreover, other existing tools for Swift only help enforce
code styles and best practices.

In this paper, we present SWAN, an open-source framework that
allows robust program analyses of Swift programs using IBM’s
T.J. Watson Libraries for Analysis (WALA). To provide a wide
range of analyses for Swift, SWAN leverages the well-established
libraries in WALA. SWAN is publicly available at https://github.
com/themaplelab/swan. We have also made a screencast available
at https://youtu.be/AZwfhOGqwFs.

CCS CONCEPTS
• Theory of computation→ Program analysis.

KEYWORDS
Swift, static analysis, taint analysis
ACM Reference Format:
Daniil Tiganov, Jeff Cho, Karim Ali, and Julian Dolby. 2020. SWAN: A Static
Analysis Framework for Swift. In Proceedings of the 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3368089.3417924

1 INTRODUCTION
Static analysis reasons about the potential runtime behaviour of a
program without necessarily executing it. Using this technique may
help protect user privacy [1] and optimize applications [2]. Despite
the potential benefits of static analysis, there is a lack of available
tools for Swift [4], Apple’s recommended choice for development
on iOS [15] and macOS [18]. In 2019, the web traffic analysis tool
StatCounter estimated that iOS devices comprised approximately

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3417924

24.79% of mobile devices in the world [10] and macOS devices
accounted for 16.46% of desktop devices [9]. Trends also show that
the popularity of both operating systems in 2020 has increased by
4.41% and 3.82%, respectively. Therefore, the ability to analyze Swift
apps has significant impact on millions of users around the world.

To bridge the gap between the increasing popularity of Swift and
the lack of available analysis tools, we introduce SWAN, an open-
source static analysis framework for Swift. We designed SWAN
with the app developer as our main target audience. Therefore,
SWAN offers both a Command-Line Interface (CLI) and a Graphical
User Interface (GUI). Both interfaces offer the same functionalities
but address different use cases. For example, the CLI enables the
developer to integrate SWAN in their continuous integration work-
flow, providing analysis results at major development milestones.
On the other hand, the GUI enables SWAN to provide the developer
with on-demand analysis results directly in VSCode. This relatively
immediate feedback helps developers focus on the task at hand,
which further helps them fix more bugs in less time [7][16].

While designing SWAN, we have also taken into consideration
future contributions to its underlying analysis engine. To enable
contributions from the wider static analysis community, we opted
for building SWAN on top of the well-established IBM T.J. Watson
Libraries for Analysis (WALA) [6]. We re-used various analysis
components that WALA has built over the years, and has proven to
work well for analyzing different programming languages such as
Java, JavaScript, and Python. This design decision enables app de-
velopers to use the various analyses that SWAN offers out of the box
(e.g., taint analysis, pointer analysis, call graph construction, and
inter-procedural dataflow analysis) without having to implement
their own analysis. Moreover, SWAN has a modular architecture
that enables researchers to build their own analyses on top of it by
leveraging its existing analysis infrastructure.

Through its suite of analyses, SWAN enables new directions
of research for iOS and macOS that have long existed for other
platforms such as Android [1], Java [13], and JavaScript [24].

2 HOW CAN APP DEVELOPERS USE SWAN?
App developers may use SWAN through either one of its frontends:
a command-line interface and a VSCode [25] extension. We will
demonstrate the features of both frontends through the built-in
taint analysis of SWAN, which tracks data leaks in a given program.

2.1 Command-Line Interface
SWAN provides a CLI script called run-swan-single. This script
analyzes a single Swift file1. The user may define sources of private
information (i.e., sources), potential locations where data may leak
1To enable multi-file analysis, we are developing a frontend that supports Xcode
projects. SWAN was previously able to analyze Xcode projects, but recent changes to
Xcode, Swift, and macOS versioning rendered our Xcode frontend non functional.

1640

https://github.com/themaplelab/swan
https://github.com/themaplelab/swan
https://youtu.be/AZwfhOGqwFs
https://doi.org/10.1145/3368089.3417924
https://doi.org/10.1145/3368089.3417924

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Daniil Tiganov, Jeff Cho, Karim Ali, and Julian Dolby

1 // SWAN:sources: "source() -> Swift.String"

2 // SWAN:sinks: "sink(sunk: Swift.String) -> ()"

3 func source() -> String { return "I'm bad"; }

4 func sink(sunk: String) { print(sunk); }

5 func random() -> String { return "whatever"; }

6 let whatever = random();

7 let src = source();

8 let combined = whatever + src;

9 sink(sunk: combined);

Figure 1: A Swift program with tainted dataflow.

10 $./utils/run-swan-single -sdk $SDK_PATH -path /<user>/

Documents/StringConcat.swift

11 [...]

12 ========= RESULTS =========

13 -- PATH

14 -- SOURCE

15 7:11 in [...]/StringConcat.swift

16 let src = source();

17 ^

18 -- INTERMEDIATE

19 8:16 in [...]/StringConcat.swift

20 let combined = whatever + src;

21 ^

22 -- SINK

23 9:1 in [...]/StringConcat.swift

24 sink(sunk: combined);

25 ^

26 ====== END OF RESULTS ======

Figure 2: An example illustrating how to use the SWAN CLI
frontend to analyze a single Swift file.

to (i.e., sinks), and methods that properly secure private informa-
tion (i.e., sanitizers) in the source file as code comments. Figure 1
represents a sample Swift program that exhibits a tainted dataflow.
The script runs on the input file that has a source and a sink defined
as code comments. When SWAN finishes its analysis, it prints the
results to the terminal. Figure 2 shows how SWAN formats the
results in a tree structure, where each path consists of a source,
sink, and path edges (i.e., intermediates).

2.2 VSCode Extension
SWAN provides a GUI via a custom VSCode extension for analyzing
Swift programs and viewing its results. To use the extension, the
user must first configure SWAN under Settings→SWAN. Figure 3
shows an example configuration for the SWAN settings.json
file. Figure 4 shows the main GUI elements of the extension. To
easily edit the configuration file, SWAN provides function name
autocompletion. If the configuration file changes, the user may still
quickly re-run the client analysis, without recompiling the code.
To recompile the Swift program, the user must press Recompile.

After configuring the extension, the user may start SWAN by
selecting the SWAN tab and pressing Run Taint Analysis in the
sidebar. The extension then automatically attaches to an existing
SWAN Java Virtual Machine (JVM), if one is running, or starts a
new JVM if one is not already running. We recommend to first
launch the JVM separately to view the console output, especially

27 "swan.SDKPath": "/Applications/Xcode.app/Contents/

Developer/Platforms/MacOSX.platform/Developer/

SDKs/MacOSX.sdk/",

28 "swan.CustomSSS": {

29 "swan.Sources": ["source() -> Swift.String"],

30 "swan.Sinks": ["sink(sunk: Swift.String) -> ()"],

31 "swan.Sanitizers": [] },

32 "swan.SingleFilePath": "/<user>/Documents/

StringConcat.swift",

33 "swan.TaintAnalysisMode": "Refined"

Figure 3: An example illustrating the contents of the configu-
ration file (settings.json) for the SWANVSCode extension.

Figure 4: The main GUI of the SWAN VSCode extension.

for debugging purposes. To enable bidirectional communication
with the running SWAN JVM, the extension uses sockets.

For our example taint analysis, SWAN displays the results in the
sidebar in filetree-like form. Each vulnerable path is an element in
the tree with a red cross beside it. Its children are the nodes in the
path. The first child is the source, the last is the sink, and any nodes
in between are intermediates. The user may select any path node,
and the extension will open the file at the corresponding source
location. In Figure 4, the user has selected the last node. Therefore,
SWAN highlights Line 13 in the source file, showing the user that
tainted data reaches the function sink() as a parameter.

3 THE MAINWORKFLOW OF SWAN
SWAN has a linear workflow where each component produces
the data requested by its parent component. Figure 5 represents
the workflow components and numerically labels them according
to their execution order. At the beginning of the workflow 1 , a
SWAN frontend instantiates a JVM using its corresponding SWAN
Driver 2 with build and analysis options. The user may configure
these options in the frontend. The build options contain arguments
needed to call the Swift compiler properly. Therefore, SWAN prop-
agates them through its components all the way to SWAN Hook 6 ,
where SWAN eventually calls the Swift compiler.

To represent the program dataflow, SWAN uses the System De-
pendence Graph (SDG), an internal WALA data structure. To gener-
ate the SDG, SWAN Driver first calls the frontend-agnosticWALA
Driver 3 , which then calls WALA Analysis Engine 4 to construct

1641

SWAN: A Static Analysis Framework for Swift ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Frontend WALA Driver

WALA
Analysis EngineClient Analysis

SWAN
TranslatorSWAN Hook

Swift Compiler

SILGen

SILLinking

SWAN Driver
options

1 2 3

4

56

7
SDG

Figure 5: The main workflow of SWAN.

a call graph (CG) for the input program. Using WALA libraries,
WALA Driver then generates the SDG from that CG and returns
it back to SWAN Driver . Besides storing call information, the CG
data structure stores the class hierarchy and the Intermediate Rep-
resentation (IR) of the input program. To construct the CG, WALA
Analysis Engine first translates the input Swift program toWALA IR,
and then generates the CG from that IR. Internally, WALA uses the
Common Abstract Syntax Tree (CAst) as an IR between the input
language and WALA IR itself. To translate the input Swift code to
WALA CAst, the WALA Analysis Engine uses SWAN Translator 5 .

After extensive discussions with the Apple Swift team, we de-
termined that it is best for SWAN to consume Swift Intermediate
Language (SIL), an internal IR within the Swift compiler pipeline,
as input instead of the Swift Abstract Syntax Tree (AST). Swift’s
AST is rather complex due to Swift’s robust language capabilities
and semantics. This complexity would have required significant
engineering effort to translate the AST into CAst without gaining
any obvious advantages. To maintain fidelity to the original source
code, SWAN operates on raw SIL before the Swift compiler applies
any code transformations or optimizations. Through a Java Native
Interface (JNI) call, SWAN Hook 6 invokes the Swift compiler and
provides it with a callback handler that receives the SIL during
compilation. The callback handler uses a custom visitor to process
all compilation contexts: SILModule, SILFunction, SILBlock, and
SILInstruction. This visitor packages all information needed for
translating it into JNI jobjects (i.e., JVM objects in C++ form).
To translate the code to WALA CAst, SWAN Hook sends back the
packaged information to SWAN Translator using JNI.

Once SWAN translates the input Swift code to WALA CAst,
SWANmay run a client analysis (e.g., taint analysis) on the program,
represented in SDG form 7 . SWAN then returns the results to the
frontend to be displayed in the appropriate format.

4 TRANSLATING SWIFT SOURCE CODE
SWAN leverages the existing infrastructure in WALA to translate
the SIL representation of an input Swift program into WALA IR. To
achieve that, SWAN first translates the input SIL to CAst, which
requires an intermediate level of abstraction due to the significant
differences between the two IRs. In particular, SIL uses pointers
whereas CAst uses references. To serve as this abstraction, we
have developed SWAN IR as a simple, hybrid IR between SIL and
WALA IR. Table 1 lists the main SWAN IR instructions, which
currently support all but two SIL instructions: partial_apply and

Table 1: A list of the main SWAN IR instructions.

Instruction Notation

new v0 := new $String
assign v0 := v1
literal v0 := #foo, v0 := #12
goto goto bb0
conditional goto cond_br v0 true: bb1, false: bb2
throw throw v0
conditional throw throw if v0
return return v0
field read v0 := v1.foo
field write v0.foo := v1
function ref v0 := func_ref test.foo() ->Swift.Int
builtin v0 := builtin Swift.Int.init[...]
apply v0 := v1(v2, v3)
try apply try v0(v1) normal: bb1, error: bb2
binary op v0 := v1 + v2
unary op v0 := ! v1

assign_by_wrapper. Similar to SIL, SWAN IR is only composed of
functions, basic blocks, and instructions.

4.1 Field Aliases
SWAN Translator converts a SIL pointer to an object with the field
value representing its underlying value. This conversion is nontriv-
ial. For example, the SIL instruction ref_element_addr derives the
address of a class field, and writes it to a value that may be accessed
later. Therefore, treating the instruction as a regular field read is not
sufficient. To address this problem, the SWAN IR symbol table has
a special type called Field Alias that aliases a field access path. To
handle instructions such as ref_element_addr, SWAN uses this
type to lazily defer the field access until the field value is accessed.
Figure 6 illustrates a SIL example where ref_element_addr de-
rives the address of the class field A.foo (Line 42) and stores it to
%2. This class field is later read by the local variable %4 (Line 44)
through the alias %3 (Line 43). To translate this example correctly,
SWAN uses the Field Alias type.

4.2 SIL Coroutines and Instructions
SWAN Translator simplifies complex SIL components. In particular,
SWAN handles asymmetric coroutines by inlining them into their
caller. SWAN also ignores instructions that we have determined
not to mutate or move data in a manner that is relevant to dataflow
analysis such as low-level memory management instructions.

4.3 SIL Builtin Functions
SIL handles many operations through builtin functions. For in-
stance, the three data structures that Swift provides (i.e., Array,
Set, and Dictionary) are entirely accessed via builtin function
calls. Simple tasks such as literal manipulation and string opera-
tions are also handled using builtins. To support builtin functions in
SWAN, we have developed a SWAN IR parser that reads plain-text,
handwritten summaries that are injected into SWAN IR at runtime.
Currently, SWAN supports numerous builtins such as literal and
array operations. To fully support the main Swift data structures,

1642

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Daniil Tiganov, Jeff Cho, Karim Ali, and Julian Dolby

34 ---- Swift ----

35 class A {

36 var foo = "bar";

37 }

38 ---- SIL of A.foo.getter ----

39 sil hidden [transparent] [ossa] @$s4temp1AC3fooSSvg :

$@convention(method) (@guaranteed A) -> @owned

String {

40 bb0(%0 : @guaranteed $A):

41 debug_value %0 : $A, let, name "self", argno 1

42 %2 = ref_element_addr %0 : $A, #A.foo

43 %3 = begin_access [read] [dynamic] %2 : $*String //

copy %2 to %3

44 %4 = load [copy] %3 : $*String // realize alias %3

as a field read to %4

45 end_access %3 : $*String

46 return %4 : $String

47 }

48 ---- SWANIR of A.foo.getter ----

49 func $String `temp.A.foo.getter : Swift.String`(v0 :

$A) {

50 bb0(v0 : $A) :

51 v1 := v0.foo

52 return v1

53 }

Figure 6: An example illustrating how ref_element_addr
may cause field aliasing.

we are continuously adding support for more builtins, updating the
SWAN IR instructions whenever necessary.

To enable translation to other framework IRs, we have designed
SWAN to provide a modular workflow. Other framework design-
ers may use the SWAN IR visitor to easily translate other input
languages to WALA IR.

5 RELATEDWORK
5.1 Android Analysis Frameworks
The Android platform has seen an abundance of analysis frame-
works over the past decade. FlowDroid [1] is a lifecycle-aware
and context-sensitive, flow-sensitive, field-sensitive, and object-
sensitive taint analysis tool for Android apps. The design of Flow-
Droid inspired us in the design of SWAN. Similar to SWAN, SCan-
Droid [3] also uses WALA, but for the purpose of matching Android
app manifests to dataflow analyses to ensure that apps do not over-
reach their permissions. DroidInfer [14] uses context-free language
reachability to perform type-based and context-sensitive taint anal-
yses for Android apps.

While all these frameworks work well for the Android platform,
there is no openly-available equivalent counterpart for the Swift
platform. SWAN bridges this gap by providing the first open-source
static analysis framework for Swift.

5.2 LLVM-Based Analyses
While LLVM [11] and Clang [12] support some low-level analyses,
they are not suitable for deeper analyses of Swift applications such

as precise taint tracking. This is because most Swift-specific struc-
tures and information are typically lost during the compilation of
Swift source code to low-level LLVM IR. Moreover, the most useful
analyses that Clang provides (i.e., memory sanitizer and thread
sanitizer) are primarily dynamic analyses. Unlike static analyses,
dynamic analyses require running the Swift program under analysis
multiple times with various inputs to ensure enough coverage of the
program behaviour. SWAN overcomes this limitation by providing
a framework for static analysis of Swift programs.

The Phasar framework [20] provides call graph construction and
dataflow analyses on LLVM IR, enabling it to analyze Swift applica-
tions. However, similar to other LLVM-based frameworks, Phaser
focuses more on low-level LLVM constructs, whereas SWAN ana-
lyzes the SIL representation [5], preserving important information
from the Swift source code such as the file and line number of the
corresponding originating code, which is important for notifying
developers of the locations of identified issues.

5.3 Swift Analysis Tools
Most publicly available analysis tools for Swift are linters such as
SwiftLint [19] and Tailor [21]. Those tools only help enforce Swift
code standards and best practices.

SonarSwift [23] is a static Swift code analyzer which allows
users to define rules for bugs, code smells, and vulnerabilities to
find in their codebase. Some existing rules listed on the website [22]
include not using identical expressions on both sides of a binary
operator (i.e., bug), not duplicating string literals (i.e., code smell),
and avoiding using DES (i.e., vulnerability). However, at the time
of this writing, Swift is not supported in the free version of the
software and requires a paid license. As a result, we are unable to
verify its correctness and effectiveness at Swift static analysis.

6 CONCLUSION
We presented SWAN, a static analysis framework for Swift that
we built on top of the WALA analysis framework. SWAN provides
various analyses to its users including call graph analysis, pointer
analysis, and inter-procedural dataflow analysis. To enable wider
adoption of SWAN, we have developed two user interfaces for it:
a command-line interface and a VSCode extension. We have also
designed SWAN to be a modular framework where some of its
components (e.g., SWAN IR and SDG-based dataflow analysis) may
be used for other WALA-based analysis frameworks. In the future,
we plan to build more support for analyzing iOS apps in SWAN,
which will put it on par with its Android counterparts with respect
to analyzing mobile applications. SWAN is open source [17], and
we welcome contributions under the Eclipse Public License 2.0 [8].

ACKNOWLEDGMENTS
We would like to thank all the following contributors to the SWAN
project: Noah Weninger, Leo Li, Mark Mroz, Yaser Alkayale, Lydia
Wu, Chen Song, Bryan Tam, and Anthony Hill. We would also like
to thank Dillon Pratt for his help with video-editing our screencast.
This material is based upon work supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

1643

SWAN: A Static Analysis Framework for Swift ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

REFERENCES
[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. 2014.
FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In Programming Language Design and Implementation
(PLDI). 259–269. https://doi.org/10.1145/2594291.2594299

[2] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and
William Pugh. 2008. Using Static Analysis to Find Bugs. IEEE Software 25, 5
(2008), 22–29. https://doi.org/10.1109/MS.2008.130

[3] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of android apps. In Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), Antony L. Hosking, Patrick Th. Eugster,
and Cristina V. Lopes (Eds.). 641–660. https://doi.org/10.1145/2509136.2509549

[4] Swift Community. 2015. The Swift Programming Language. Retrieved Jan 24,
2020 from https://swift.org/

[5] Swift Community. 2020. Swift Intermediate Language (SIL). Retrieved May 28,
2020 from https://github.com/apple/swift/blob/master/docs/SIL.rst

[6] WALA Community. 2006. T.J. Watson Libraries for Analysis. Retrieved May 28,
2020 from https://github.com/wala/WALA/

[7] Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith,
and Emerson R. Murphy-Hill. 2017. Just-in-time Static Analysis. In International
Symposium on Software Testing and Analysis (ISSTA). 307–317. https://doi.org/10.
1145/3092703.3092705

[8] Eclipse Foundation. 2017. Eclipse Public License 2.0. Retrieved May 28, 2020 from
https://www.eclipse.org/legal/epl-2.0/

[9] StatCounter GlobalStats. 2019. Desktop Operating SystemMarket Share Worldwide.
RetrievedMar 17, 2020 from https://gs.statcounter.com/os-market-share/desktop/
worldwide/#monthly-201901-201912

[10] StatCounter GlobalStats. 2019. Mobile Operating System Market Share Worldwide.
Retrieved Mar 17, 2020 from https://gs.statcounter.com/os-market-share/mobile/
worldwide/#monthly-201901-201912

[11] LLVM Developer Group. 2003. The LLVM Compiler Infrastructure. Retrieved
May 28, 2020 from https://llvm.org/

[12] LLVM Developer Group. 2007. Clang: a C language family frontend for LLVM.
Retrieved May 28, 2020 from https://clang.llvm.org/

[13] The Sable Group. 1999. Soot - A Java optimization framework. McGill University,
Montréal, QC, Canada. Retrieved June 4, 2020 from https://github.com/Sable/soot

[14] Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. 2015. Scalable and
precise taint analysis for Android. In International Symposium on Software Testing
and Analysis (ISSTA), Michal Young and Tao Xie (Eds.). 106–117. https://doi.org/
10.1145/2771783.2771803

[15] iOS Team. 2007. iOS 13 - Apple (CA). Apple, Cupertino, California, USA. Retrieved
Jan 24, 2020 from https://www.apple.com/ca/ios/

[16] Mik Kersten and Gail C. Murphy. 2006. Using Task Context to Improve Pro-
grammer Productivity. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Portland, Oregon, USA) (SIG-
SOFT ’06/FSE-14). Association for Computing Machinery, New York, NY, USA,
1–11. https://doi.org/10.1145/1181775.1181777

[17] The Maple Lab. 2017. A Swift Static Analysis Framework. University of Alberta,
Edmonton, Alberta, Canada. Retrieved May 28, 2020 from https://github.com/
themaplelab/swan

[18] macOS Team. 2001. macOS Mojave - Apple (CA). Apple, Cupertino, California,
USA. Retrieved Jan 24, 2020 from https://www.apple.com/ca/macos/mojave/

[19] Realm. 2015. SwiftLint - A tool to enforce Swift style and conventions. Retrieved
May 28, 2020 from https://github.com/realm/SwiftLint

[20] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. 2019. PhASAR: An
Inter-procedural Static Analysis Framework for C/C++. In International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
393–410. https://doi.org/10.1007/978-3-030-17465-1_22

[21] Sleekbyte. 2015. Tailor - Cross-platform static analyzer and linter for Swift. Re-
trieved May 28, 2020 from https://tailor.sh/

[22] SonarSource. 2017. Swift Static Code Analysis Rules. Retrieved May 28, 2020 from
https://rules.sonarsource.com/swift

[23] SonarSwift. 2015. Code Quality and Security for Swift. SonarSource, Geneva,
Switzerland. Retrieved May 28, 2020 from https://www.sonarsource.com/swift/

[24] TAJS Team. 2009. Type Analyzer for JavaScript. Århus University, Århus, Den-
mark. Retrieved June 4, 2020 from https://github.com/cs-au-dk/TAJS

[25] Visual Studio Team. 2015. Visual Studio Code - Code Editing. Redefined. Mi-
crosoft, Redmond, Washington, USA. Retrieved Feb 19, 2020 from https:
//code.visualstudio.com

1644

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1145/2509136.2509549
https://swift.org/
https://github.com/apple/swift/blob/master/docs/SIL.rst
https://github.com/wala/WALA/
https://doi.org/10.1145/3092703.3092705
https://doi.org/10.1145/3092703.3092705
https://www.eclipse.org/legal/epl-2.0/
https://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201901-201912
https://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-201901-201912
https://gs.statcounter.com/os-market-share/mobile/worldwide/#monthly-201901-201912
https://gs.statcounter.com/os-market-share/mobile/worldwide/#monthly-201901-201912
https://llvm.org/
https://clang.llvm.org/
https://github.com/Sable/soot
https://doi.org/10.1145/2771783.2771803
https://doi.org/10.1145/2771783.2771803
https://www.apple.com/ca/ios/
https://doi.org/10.1145/1181775.1181777
https://github.com/themaplelab/swan
https://github.com/themaplelab/swan
https://www.apple.com/ca/macos/mojave/
https://github.com/realm/SwiftLint
https://doi.org/10.1007/978-3-030-17465-1_22
https://tailor.sh/
https://rules.sonarsource.com/swift
https://www.sonarsource.com/swift/
https://github.com/cs-au-dk/TAJS
https://code.visualstudio.com
https://code.visualstudio.com

	Abstract
	1 Introduction
	2 How Can App Developers Use SWAN?
	2.1 Command-Line Interface
	2.2 VSCode Extension

	3 The Main Workflow of SWAN
	4 Translating Swift Source Code
	4.1 Field Aliases
	4.2 sil Coroutines and Instructions
	4.3 sil Builtin Functions

	5 Related Work
	5.1 Android Analysis Frameworks
	5.2 LLVM-Based Analyses
	5.3 Swift Analysis Tools

	6 Conclusion
	Acknowledgments
	References

