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Precise static analyses are context-, field- and flow-sensitive. Context- and field-sensitivity are both expressible

as context-free language (CFL) reachability problems. Solving both CFL problems along the same data-flow

path is undecidable, which is why most flow-sensitive data-flow analyses over-approximate field-sensitivity

through k-limited access-path, or through access graphs. Unfortunately, as our experience and this paper show,

both representations do not scale very well when used to analyze programs with recursive data structures.

Any single CFL-reachability problem is efficiently solvable, by means of a pushdown system. This work thus

introduces the concept of synchronized pushdown systems (SPDS). SPDS encode both procedure calls/returns

and field stores/loads as separate but “synchronized” CFL reachability problems. An SPDS solves both individual

problems precisely, and approximation occurs only in corner cases that are apparently rare in practice: at

statements where both problems are satisfied but not along the same data-flow path.

SPDS are also efficient: formal complexity analysis shows that SPDS shift the complexity from ⋃︀F⋃︀3k under

k-limiting to ⋃︀S⋃︀⋃︀F⋃︀2, where F is the set of fields and S the set of statements involved in a data-flow. Our

evaluation using DaCapo shows this shift to pay off in practice: SPDS are almost as efficient as k-limiting with

k ≙ 1 although their precision equals k ≙ ∞. For a typestate analysis SPDS accelerate the analysis up to 83×
for data-flows of objects that involve many field accesses but span rather few methods.

We conclude that SPDS can provide high precision and further improve scalability, in particularly when

used in analyses that expose rather local data flows.
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1 INTRODUCTION

Static data-flow analysis helps detect bugs and security vulnerabilities early in the software de-
velopment process, including semantic properties such as null-pointers [Nanda and Sinha 2009],
data races [Kahlon et al. 2009; Yan et al. 2011], and misuses of application programming interfaces
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(APIs) [Fink et al. 2008; Hovemeyer and Pugh 2004; Krüger et al. 2018], as well as security vulnera-
bilities such as privacy leaks [Arzt et al. 2014; Grech and Smaragdakis 2017], SQL injection [Livshits
and Lam 2005; Martin et al. 2005], and execution of untrusted code [Lerch et al. 2014].
To avoid false positives, static analyses require precise algorithms and abstractions. There

are various design dimensions to fine tune the precision of a static analysis. For instance, an
analysis can be context-sensitive, field-sensitive, flow-sensitive, or any combination of the previous
options. Context-sensitivity distinguishes its approximations by calling contexts, field-sensitivity
distinguishes two fields of the same object, and flow-sensitivity distinguishes data-flow results
for distinct control-flow paths. Ideally, a highly precise analysis combines all three, but in the
past researchers have struggled to design scalable static-analysis algorithms that are context-,
field- and flow-sensitive. This is because in essence such a setup entails that one has to store
analysis information at every program statement (for flow-sensitivity), for every calling context
(context-sensitivity) and for different possible combinations of field accesses (field-sensitivity).

We ourselves have applied static analyses in real-world settings and found that field-sensitivity
can pose a particular challenge for code patterns with cyclic field references. These tend to degrade
the analysis performance. In Java, such code patterns typically occur in the implementation of
standard data structures such as java.util.LinkedList, java.util.HashMap or java.util.TreeMap.
The patterns also occur when inner classes are used1, and when two classes mutually reference
each other.
Listing 1 shows an example of a cyclic field reference. It shows an excerpt of the source code

from the Java 8 implementation2 of TreeMap. The class contains an inner class TreeMap.Entry that
lists three fields (parent, right, and left), each of type TreeMap.Entry. Method put() creates a
TreeMap.Entry that wraps the inserted element. The TreeMap.Entry is then used to balance the tree
after insertion (call to fixAfterInsertion in line 4). The method fixAfterInsertion iterates over
all parent entries and calls rotateLeft to shift around elements within the tree (line 10). The latter
method stores to and loads from the fields parent, right, and left of the class TreeMap.Entry.

Why is this challenging to analyze? Let us assume a context-sensitive, flow-sensitive, and field-
sensitive static taint analysis that tracks the inserted value, which is a parameter to the method
put(). To cope with heap-reachable data-flows, field-sensitive analyses commonly propagate data-
flow facts in the form of access paths [Arzt et al. 2014; Balatsouras et al. 2017; Cheng and Hwu
2000; De and D’Souza 2012; Deutsch 1994; Feng et al. 2015; Hauzar et al. 2014; Tripp et al. 2013,
2009]. An access path comprises a local variable followed by a sequence of field accesses, and every
field-store statement adds an element to the sequence. The while-loop of fixAfterInsertion (line 7)
in combination with the three field stores (lines 16, 19, and 20) within the method rotateLeft()

represent a common code pattern that leads to the generation of access paths of all combinations
contained in the set T ≙ {this. f1. f2.⋯. fn .value ⋃︀ fi ∈ {right, left, parent},n ∈ N}. This is due to
the fact that the static analysis is path-insensitive and over-approximates the execution of all paths,
hence the inserted value is potentially heap-reachable via all these access paths. The data-flow
element is correctly propagated only if the correct access path exists in the set T at the call to a
map operation that retrieves the inserted value, e.g., get(Object key) or iterator(). 3

The set of data-flow facts T is unbounded. Because most static data-flow algorithms require a
finite data-flow domain, they typically use so-called k-limiting to limit the field-sequence of the
access paths to length k [Deutsch 1994]. k-limiting frequently results in analysis imprecision, also

1The compiler automatically stores the outer class instance within a field of the inner class.
2http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/eab3c09745b6/src/share/classes/java/util/TreeMap.java
3One way to avoid such exponential blowup is to use so-called store-based heap models, which model the heap via allocation

sites. As we show in related work, however, such models have very profound limitations on their own, for instance precluding

concise, intensional procedure summaries [Bodden 2018]. Hence here we focus here on storeless models using access paths.
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1 public V put(K key, V value) {

2 TreeMap.Entry<K,V> parent = //complex computation done earlier

3 TreeMap.Entry<K,V> e = new TreeMap.Entry<>(key, value, parent);

4 fixAfterInsertion(e);

5 }

6 private void fixAfterInsertion(Entry<K,V> x) {

7 while (x != null && x != root && x.parent.color == RED) {

8 //removed many branches here...

9 x = parentOf(x);

10 rotateLeft(parentOf(parentOf(x)));

11 }

12 }

13 private void rotateLeft(TreeMap.Entry<K,V> p) {

14 if (p != null) {

15 TreeMap.Entry<K,V> r = p.right;

16 p.right = r.left;

17 if (l.right != null) l.right.parent = p;

18 //removed 8 lines with similar field accesses

19 r.left = p;

20 p.parent = r;

21 }

22 }

Listing 1. Excerpt code example of TreeMap which is difficult to analyze statically.

known as “over-tainting”, so also in Listing 1: not only will the field value of a TreeMap.Entry of
the map be tainted, but any other field will be tainted as well. For example, any key inserted into
the map imprecisely receives the taint as TreeMap.Entry has a field key. Because the setT is infinite,
the imprecision occurs for any value k .

Access graphs are a way to avoid k-limiting [Geffken et al. 2014; Khedker et al. 2007]. They model
the “language” of field accesses using an automaton. Access graphs represent the set T finitely
and precisely. However, just as access paths, also access graphs suffer from the state-explosion
we show in Listing 1. In the illustrated situation, the analysis must store a set of data-flow facts
similar to T , i.e., access paths or graphs, at every statement, and potentially every context where
a variable pointing to the map exists. Given the large size of T , computing the fixed point for all
these statements is highly inefficient, even when access graphs are used.

In this work, we thus present synchronized pushdown systems (SPDS), a novel abstraction that uses
pushdown systems to combine context-sensitivity, field-sensitivity and flow-sensitivity efficiently.
First, we show how to encode a flow-sensitive and field-sensitive analysis within a pushdown system,
the field-PDS, which pushes and pops fields from a stack at field-store and field-load statements.
Without resorting to any k-limiting, this field-PDS delivers a concise and precise representation of
all sets T for every statement. The field-PDS is inspired by a pushdown system proposed earlier
by Reps et al. [2003], the call-PDS, which solves a context-sensitive and flow-sensitive (but field
insensitive) analysis problem by pushing call sites onto its stack. The SPDS then synchronizes both
PDS, delivering a decidable construction of field- and context-sensitive data-flow results.
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The problem of field-sensitive and context-sensitive analysis is undecidable in general [Reps
2000], which forces also SPDS to over-approximate. SPDS, though, are specifically designed to
expose false positives only in corner cases of which we hypothesize (and for which our evaluation
confirms) that they virtually non-existent in practice: situations, in which an improperly matched
caller accesses relevant fields in the same ways as the proper caller would.

A formal complexity analysis shows that SPDS shift the complexity from ⋃︀F⋃︀3k under k-limiting
to ⋃︀S⋃︀⋃︀F⋃︀2, where F is the set of fields and S the set of statements involved in a data-flow. In our
experiments, SPDS are scale similar to k-limiting with k ≙ 1 although their precision equals k ≙ ∞.
We also present two instantiations of the synchronized pushdown systems: a demand-driven

pointer analysis and a typestate analysis. Based on those clients, we validate our hypothesis and
observe that SPDS theoretical over-approximations are non-existent in practice for the DaCapo
benchmark suite. Additionally, SPDS outperforms the access graph abstraction for the dominant
types of data-flows, data-flows that involve many fields but span across few methods.
To summarize, the main contributions of this paper are:

● A pushdown-system-based formulation of an unlimited field-sensitive data-flow analysis.
● A synchronization technique of two pushdown systems resulting in a decidable flow-sensitive
data-flow analysis that combines context-sensitivity with field-sensitivity.
● A worst-case complexity analysis of the presented synchronized pushdown systems in
comparison to an access-path based analysis.
● An empirical evaluation of the proposed solutions on two common data-flow analysis clients:
pointer analysis and typestate analysis.

2 A SHORT INTRODUCTION TO PUSHDOWN SYSTEMS

In this section, we briefly introduce the reader to pushdown systems (PDS). Technically, a pushdown
system finitely represents a transition system with potentially infinitely many states, called the
control locations. PDS are used in model checking [Esparza et al. 2000; Finkel et al. 1997; Lal and
Reps 2006] but have also been applied to data-flow analysis [Lal and Reps 2008; Reps et al. 2005].
For model checking, each control location represents a possible program state, whereas in data-flow
analysis the control locations resemble data-flow facts.

Definition 1. A pushdown system is a triple 𝒫 ≙ (P , Γ,∆), where P and Γ are finite sets called

the control locations and the stack alphabet, respectively. A configuration is a pair ⎷p,w⌄, such that

p ∈ P andw ∈ Γ∗, i.e., a control location with a sequence of stack elements. The finite set ∆ is composed

of rules. A rule has the form ⎷p,γ⌄→ ⎷p′,w⌄, where p,p′ ∈ P , γ ∈ Γ, andw ∈ Γ∗.

The length ofw determines the type of the rule. A rule with ⋃︀w ⋃︀ ≙ 1 is called a normal rule, one
with length 2 is a push rule, and a rule of length 0 is a pop rule. If the length ofw is larger than 2,
the rule can be subdivided into multiple push rules of length 2.
In the remainder of the paper, we refer to a particular pushdown system for context-sensitive

and flow-sensitive data-flow analysis as the “call-PDS” 𝒫S ≙ (V,S,∆S). The control locations P
are program variables (from the set V) and the stack alphabet Γ is the set of program statements
(hereafter S). The rule set ∆ models the data-flow effect of a variable at a statement. In standard
program-analysis terminology, the rule set ∆ corresponds to flow functions [Kildall 1973; Naeem
et al. 2010; Reps et al. 1995]. Its normal rules model intra-procedural data-flows, whereas the
push and pop rules handle inter-procedural data-flows and model context-sensitivity. 𝒫S contains
multiple push rules for each call site. Each rule maps an argument to the corresponding parameter
variable of the callee. The pop rules in 𝒫S map escaping data-flow variables at return statements
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Table 1. The flow function assignFlow for normal rules of assignment statements for 𝒫S.

In Out

Variable Statement
(V) (S) (℘(V))

x x ← ∗ ∅
y x ← y {x ,y}
y x . f ← y {x ,y}
y x ← y. f {x ,y}

23 main(){

24 A u = new A();

25 A v = u;

26 A w = foo(v);

27 }

Normal Rules Transitive Callee Flow

u v w

28 foo(A a){

29 if(...){

30 return a;

31 }

32 b = foo(a);

33 return b;

34 }

a b

Fig. 1. Data-flow example for a simple recursive program.

back to the respective call sites. The normal rules also capture the semantics of the control-flow,
which makes 𝒫S flow-sensitive.

Table 1 depicts the flow function assignFlow that encodes the data-flow of a variable x at an
assignment statement s . If t is the control-flow successor of s , 𝒫S has a normal rule ⎷x , s⌄ → ⎷y, t⌄
for each y ∈ assignFlow(x , s). For example, an assignment statement may overwrite the lefthand-
side variable and kill the data-flow. This is indicated in the first row of Table 1 which is read as
follows, when a data-flow fact x reaches any assignment statement that overwrites variable x (for
instance, x ← y or x ← y. f , grouped in the table as x ← ∗), the function assignFlow returns ∅ to kill
the data-flow. Statements also generate data-flow facts. assignFlow returns the set {x ,y} when a
data-flow y reaches an assignment statement x ← y (second row in Table 1). Note, the definition for
𝒫S also describes flows to and from the base variables of field store and field load statements (third
and forth rows in Table 1). A data-flow fact y reaching a field store statement x . f ← y generates the
fact x , assignFlow ignores the field f which means 𝒫S models a field-insensitive data-flow analysis.
𝒫S intentionally disregards fields to keep the set of control locations of the PDS finite. For SPDS to
be field-sensitive, the field-PDS models the infinite state space provoked by field stores.

Example 2.1. We discuss an example based on the program given in Figure 1. The program
allocates an object that is then passed to a method foo() that calls itself recursively (line 32). For the
example program, the control locations of 𝒫S are the local variables of main() and foo(). The stack
alphabet of 𝒫S is the set of program statements. Throughout our examples, we use line numbers to
refer to statements. The rule set ∆S depends on the control-flow graph as well as the call graph
of the program. The construction of both graphs is straightforward for the example in Figure 1.
Table 2 lists all rules within the set ∆S of 𝒫S. Normal rules are intra-procedural, in Table 2 we group
them by their containing method. The push and pop rules are inter-procedural and their target
configurations contain statements of the caller and the callees.
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Table 2. Rules of the 𝒫S for the example in Figure 1.

Normal Rules (main)

⎷u, 24⌄→ ⎷u, 25⌄
⎷u, 24⌄→ ⎷v, 25⌄
⎷u, 25⌄→ ⎷u, 26⌄

Normal Rules (foo)

⎷a, 28⌄→ ⎷a, 29⌄
⎷a, 29⌄→ ⎷a, 30⌄
⎷a, 29⌄→ ⎷a, 31⌄
⎷a, 32⌄→ ⎷a, 33⌄
⎷b, 32⌄→ ⎷b, 33⌄

Push Rules

⎷v, 25⌄→ ⎷a, 28 ⋅ 26⌄
⎷a, 31⌄→ ⎷a, 28 ⋅ 32⌄

Pop Rules

⎷a, 30⌄→ ⎷a,ϵ⌄
⎷a, 30⌄→ ⎷v,ϵ⌄
⎷a, 33⌄→ ⎷a,ϵ⌄
⎷a, 33⌄→ ⎷v,ϵ⌄
⎷b, 33⌄→ ⎷w,ϵ⌄
⎷b, 33⌄→ ⎷b,ϵ⌄

We start by explaining the normal rules. The program’s control-flow graph has an edge from
statement 24 to 25, because the latter is a control-flow successor of the former. 𝒫S has two normal
rules that match this control-flow edge: ⎷u, 24⌄ → ⎷u, 25⌄ and ⎷u, 24⌄ → ⎷v, 25⌄. For both rules,
the control location of their start configuration is the variable u. Both rules describe the flow of the
statement in line 25 with respect to that variable. One rule states that the statement transfers data
from u to v, while the other encodes the data-flow that remains within u. The other normal rules
are straightforward, because they merely follow the control-flow of the program. We visualize the
normal rules in the form of a data-flow graph next to the code in Figure 1. For each normal rule,
the (start or target) configuration corresponds to a node in the graph, and nodes are plotted in the
form of a grid. The configuration’s variable can be extracted from the column header. Nodes are
drawn between two statements as the associated data-flow holds after a statement (and before the
next). Therefore, a rule corresponds to an edge within the graph.
Table 2 additionally lists two push and seven pop rules relevant to the example. The push rule

⎷v, 25⌄ → ⎷a, 28 ⋅ 26⌄ maps the argument variable v at the call site in line 26 to the parameter
variable a of the callee foo(). That rule modifies the stack in the following way: it replaces the top
most element of the stack (25, the predecessor of the call site in line 26) by the first statement of the
called method (line 28). Additionally, the rule pushes the the call site (line 26) onto the stack. The
semantics of the push is as follows: when data-flow reaches variable v at line 25, the flow continues
at the statement in line 28. Whenever a statement is popped from the stack, the flow continues to
hold after the call site in line 26.

The pop rules map data-flow from callee to caller. For example, the rule ⎷a, 30⌄→ ⎷b,ϵ⌄ captures
variable a returning from the statement in line 30 to b at the call site 32.

The rules define a transition relation⇒ between configurations of 𝒫 : If ⎷p,γ⌄→ ⎷p′,w⌄, then
⎷p,γw ′⌄⇒ ⎷p′,ww ′⌄ for allw ′ ∈ Γ∗. Taking the transitive closure of⇒ (denoted by⇒∗) from a
starting configuration c constructs a set of reachable configurations called post∗(c) ≙ {c′ ⋃︀ c ⇒∗ c′}.
The set can potentially be infinite, however, the set of configurations is regular and it can be finitely
represented by a finite automaton.

Definition 2. Given a pushdown system𝒫 ≙ (P , Γ,∆), a𝒫-automaton is a finite non-deterministic

automaton𝒜 ≙ (Q, Γ,δ ,P , F) whereQ ⊇ P is a finite set of states, δ ⊆ Q×Γ×Q is the set of transitions

and F ⊆ Q are the final states. The initial states are all control locations P of the pushdown system

𝒫 . A configuration ⎷p,w⌄ is accepted by 𝒜, if the automaton contains a path from state p to some
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o24u
24

(a) Before post∗ saturation

o24u

v

a28a

b

w
24,25,26

25

ϵ 26

32

28,29, 30,31,
32,33, ϵ

32,33,ϵ

ϵ

(b) A�er post∗ saturation

Fig. 2. The automaton 𝒜S before and a�er post∗ saturation with the 𝒫S

final state q ∈ Q such that the word along the path is equal tow . We write ⎷p,w⌄ ∈ 𝒜 for an accepted

configuration.

The 𝒫-automaton 𝒜 of a pushdown system 𝒫 encodes the set post∗(c). There is a standard
algorithm [Bouajjani et al. 1997; Esparza et al. 2000; Reps et al. 2007] to compute the automaton
efficiently. We refer to this algorithm as post∗. The algorithm post∗ takes as input a 𝒫-automaton
that accepts the initial configuration c , and applies a saturation process to the automaton. The
algorithm saturates the automaton with transitions, i.e., depending on the pushdown system new
transitions are added to the automaton until a fixed-point is reached. Upon termination of post∗,
the automaton represents the set post∗(c).
The 𝒫-automaton for the pushdown system 𝒫S is an automaton whose nodes are variables4

x ∈ V and its transitions are labeled by statements s ∈ S. Throughout the paper we refer to this
automaton as 𝒜S.

Algorithm post∗ can be consulted to compute data-flow reachability. When 𝒜S initially accepts
a variable v ∈ V with a label s ∈ S, after saturation with post∗, 𝒜S lists all configurations encoding
the same variables containing the same data as v at statement s .

Example 2.2. We saturate the 𝒜S in Figure 2a with the 𝒫S of Table 2. 𝒜S initially accepts the
configuration ⎷u, 24⌄, which means 𝒜S tracks the variables that the object allocated in 24 flows to.
Therefore, the accepting state of the automaton is labeled by o24, which refers to the object created
at this allocation site.

Figure 2b depicts the final post∗ saturated𝒜S. The semantics of this automaton is as follows: any
variable of any configuration that is accepted within the automaton points-to the object allocated in
24. To keep the figure concise, we visualize transitions between the same states (but with different
labels) as a single transition and separate their labels by commas.
We explain the generation of the automaton based on the application of the different rules.

Normal Rules: The configuration that 𝒜S in Figure 2a initially accepts is the same as the start
configuration of the two normal rules ⎷u, 24⌄ → ⎷u, 25⌄ and ⎷u, 24⌄ → ⎷v, 25⌄. Since 𝒜S accepts
the rule’s start configuration, post∗ adds a transition such that the target of the rule is also accepted.

Therefore, transitions u
25
Ð→ o24 and v

25
Ð→ o24 are added to 𝒜S. As the start configuration of the

rule ⎷u, 25⌄ → ⎷u, 26⌄ is now also an accepted configuration, the transition u
26
Ð→ o24 is added. All

edges out of u and v (except the one with label ϵ) are added transitively due to the normal rules in

4Except for some intermediate nodes generated by push rules.
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main. These normal rules propagate data-flow intraprocedurally to the variables at the respective
statements of main.

Push Rules: 𝒜S accepts the start configuration of the push rule ⎷v, 25⌄ → ⎷a, 28 ⋅ 26⌄. Push rules
are treated separately by post∗ and add two transitions to 𝒜S. For the latter rule, post

∗ adds the

two transitions a
28
Ð→ a28 and a28

26
Ð→ o24 to render ⎷a, 28 ⋅ 26⌄ accepting. Note, post∗ introduces the

intermediate node a28 to 𝒜S as this state did not exist. The accepting configuration ⎷a, 28 ⋅ 26⌄
carries the semantic that a at statement 28 points to o24 under calling context 26. Now that 𝒜S
accepts configuration ⎷a, 28 ⋅ 26⌄ the normal rule ⎷a, 28⌄ → ⎷a, 29⌄ is applicable and the data-flow
of object o24 within method foo() is computed.

Method foo() recursively calls itself in line 32 and𝒫S lists a second push rule, ⎷a, 31⌄ → ⎷a, 28⋅32⌄

that describing that call. The start configuration of the rule is accepted as of transition a
31
Ð→ a28.

Application of the push rule adds the self loop transition a28
32
Ð→ a28. The latter transition introduces

a loop within 𝒜S, and it accepts an infinite set of configurations. 𝒜S accepts any configuration of
the form ⎷a, 28 ⋅ 32 ⋅ . . . ⋅ 32 ⋅ 26⌄. The recursion of foo() is reflected in the infinitely growing calling
contexts.

Pop Rules: Exemplary for the other pop rules, we discuss the application of the rule ⎷b, 33⌄ →
⎷w,ϵ⌄.𝒜S has a transition out of bwith label 33 that matches the start configuration of the rule. The

transition’s target state is a28, and post
∗ adds the ϵ-transition w

ϵ
Ð→ a28. State a28 is accepted with label

26 and therefore state w is also accepted. After the application of the pop rule, configuration ⎷w, 26⌄
is accepted, and algorithm post∗ pops one stack element from the stack. This stack encodes the
calling context and makes the data-flow analysis context-sensitive as it only considers (same-level)

realizable paths [Reps et al. 1995].

3 FIELD PUSHDOWN SYSTEM

Section 2 describes the pushdown-system framework and an instance of it: the call-PDS (𝒫S) which
solves a data-flow problem in a context-sensitive and flow-sensitive manner. In this section we
present the first contribution of our paper: we show how a field- and flow-sensitive data-flow
analysis also can be formulated as a pushdown system.

For that, we introduce another pushdown system, the “field-PDS” 𝒫F, whose stack elements are
drawn from F, the set of all fields in the analyzed program. The corresponding 𝒫−automaton 𝒜F is
a concise and finite representation of the (potentially infinitely many) access paths the analysis
propagates. Opposed to standard access-path based approaches that require one access path per
statement (and per context), 𝒜F maintains all access paths at all statements in a single automaton.

In the following, we first provide a formal definition of the system 𝒫F, then we provide examples.

Definition 3. The pushdown system of fields is the pushdown system 𝒫F ≙ (V × S,F,∆F). A
control location of this system is a pair of a variable and a statement. We use x@s for an element

(x , s) ∈ V × S. The notation emphasizes the fact that x holds at statement s . The pushdown system

pushes and pops elements of F to and from the stack. The stack may also be empty, which is represented

by the ϵ field.

The configurations of𝒫S are pairs ofV×S
∗, so a configuration of𝒫F is an element of (V×S)×F∗.

Both systems are flow-sensitive, but they achieve it in different manners. 𝒫F models flow-sensitivity
by encoding the control-flow within the control location, while 𝒫S models control-flow within the
stack. We write a configuration of 𝒫F as ⎷x@s, f0 ⋅ f1 ⋅ . . . fn⌄ and it can be read as follows: After
statement s , the analysis tracks data flow within the access path x . f0 ⋅ f1 ⋅ . . . fn . In the following,
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Table 3. The function normalFieldFlow for 𝒫F. Within the comment column t refers to the input statement.

Variable Statement Out Type Comment

(V) (S) (℘(V))

x x ← ∗ ∅

intra

kill info on x at t
y x ← y {x ,y} y copied to x at t
y x . f ← y {y} info on y is retained at t
y x ← y. f {y} info on y is retained at t

pi m(p1,p2, . . . ,pn) {qi}
inter

pi copied to formal qi
qi return {pi} qi copied to actual pi
x return x {y} x copied to assigned value y

we construct the set of rules ∆F as the disjoint union of the sets of normal (∆normal
F

), push (∆
push
F

),

and pop rules (∆
pop
F

).

3.1 Normal Rules (∆normal
F

)

𝒫F pushes and pops fields to and from its stack. Unlike 𝒫S, here the statements that push and pop
the fields are not call and return statements but store and load statements. All other statements
maintain the field stack unchanged and constitute normal rules of 𝒫F.
We construct the normal rules by the help of the function normalFieldFlow. The function maps

from V × S to ℘(V). Table 3 lists the normalFieldFlow function. The first two columns describe the
inputs, while the third column contains the respective output set O ⊆ V of the function.

Assume 𝒫F accepts a configuration ⎷x@s,д0 ⋅ . . . ⋅дn⌄ and let t be an intraprocedural control-flow
successor of s . Assume further y ∈ normalFieldFlow(x , t), then 𝒫F has a rule:

⎷x@s,д0⌄ → ⎷y@t̃ ,д0⌄ ∈ ∆
normal
F .

In the formula it is t̃ ≙ t , unless t is a call site or a return statement (cases for which Table 3 lists
inter as type). If t is a call site, t̃ is the first statement of the callee. For a return statement t of a
methodm, t̃ is defined as the call site callingm.

The start configuration and the target configuration of the rules have the same field as the stack
location. Therefore, none of these rules add or remove an element from the stack.

As 𝒫S, also 𝒫F kills data-flows at assignment statements. The first row of Table 3 is equivalent to
the formulation in 𝒫S. Function normalFieldFlow returns ∅ for a data-flow x reaching a statement
x ← ∗. For an assignment statement t ∶x ← y, the field-PDS generates the normal rules ⎷y@s,д0⌄ →
⎷y@t ,д0⌄ and ⎷y@s,д0⌄ → ⎷x@t ,д0⌄. At the successor statement t of s , the data is reachable via
variables x and y. Field load and store statements differ from the handling in 𝒫S. These statements
do not generate additional normal rules for 𝒫F, but purely add identity normal rules. When a fact y
holds before the field-store statement t ∶x . f ← y, the normal rule propagates y simply as y@t to
hold after the statement. The handling of the actual assignment to x . f is performed by an additional
push rule that we describe below.
The inter-procedural data-flows map to normal rules in 𝒫F. A parameter pi reaching the call

sitem(p1,p2, . . . ,pn) is mapped to the qi@t̃ which refers to the i-th formal parameter at the first
statement t̃ of the callee method. At return statements, the parameters qi are also mapped back to
the corresponding arguments pi at the call site t̃ as defined in the last row of Table 3. Hereby, 𝒫F is
defined to propagate the data-flow at return statements ofm to all call sites ofm, and, opposed to
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35 foo(u, v, w){

36 v.f = u;

37 x = w.f;

38 if(...){

39 w.g = v;

40 } else {

41 w.h = v;

42 }

43 }

Automaton 𝒜F

ou@35

v@36f
u@35
u@36
u@37
u@38
u@39
u@40
u@41
u@42

w@41h
w@39д
v@36
v@37
v@38
v@39
v@40
v@41
v@42

w@41

w@40

w@42
ϵf

h

д

h

д

Access Path
u v.f w.g.f w.h.f

data flow

Fig. 3. A post∗-saturated𝒜F when initialized with the configuration ⎷u@35,ϵ⌄ and saturated with 𝒫F listed
in Table 4. Next to it, the same information represented as standard data-flow graph with an access-path
domain.

𝒫S, 𝒫F is context-insensitive. A similar rule also handles the return value, which we omit from the
table for brevity.

3.2 Push Rules (∆
push
F

)

When a configuration ⎷y@s,д0 ⋅ . . . ⋅дn⌄ is accepted by𝒜F and some successor t of s is a field-store
statement, i.e., t ∶x . f ← y,𝒫F lists the normal rule ⎷y@s,д0⌄ → ⎷y@t ,д0⌄. In addition to this normal
rule, 𝒫F lists the following push rule for a field-store statement which pushes a field element onto

the stack: ⎷y@s,д0⌄ → ⎷x@t , f ⋅д0⌄ ∈ ∆
push
F

. The push rule has the following semantic meaning:
Whenever the configuration ⎷y@s,д0 ⋅ д1 ⋅ . . . ⋅ дn⌄ turns accepting during the computation of
post∗, the configuration ⎷x@t , f ⋅ д0 ⋅ д1 ⋅ . . . ⋅ дn⌄ is marked as accepting as well. Speaking in
terms of an access path: If an access path y.д0 ⋅д1 ⋅ . . . ⋅дn holds before statement t , the access path
x . f ⋅д0 ⋅д1 ⋅ . . . ⋅дn holds after statement t , i.e., the field f is prepended to the access path.

3.3 Pop Rules (∆
pop
F

)

The pop rules correspond to the runtime semantics of a field-load statement. For an accepting
configuration ⎷y@s, f ⋅д0 ⋅ . . . ⋅дn⌄where the successor statement t of s is a load statement x ← y. f ,
𝒫F removes a stack element from the field stack, spoken in the form of its rules, the system has a
pop rule: ⎷y@s, f ⌄ → ⎷x@t ,ϵ⌄ ∈ ∆

pop
F

.
An accepting configuration ⎷y@s, f ⋅д0 ⋅ . . . ⋅дn⌄ induces the configuration ⎷x@t ,д0 ⋅ . . . ⋅дn⌄. In

other terms, when the access path y. f ⋅д0 ⋅ . . . ⋅дn holds before t , the analysis continues to propagate
the data flow x .д0 ⋅ . . . ⋅дn after statement t .

Example 3.1. Figure 3 shows an example program code with three field-store and one field-load
statements. 𝒫F modeling the code’s data-flow is shown in the form of the rule set ∆F in Table 4.
Table 4 lists normal, push, and pop rules for the data-flows in method foo(). For example, the
normal rule ⎷u@36,∗⌄ → ⎷u@37,∗⌄ encodes that data flows from u@36 to u@37. The kleene-star
(*) at the stack location of the rule is a wildcard that can be replaced by any field д ∈ F, i.e., the
representation actually bundles multiple rules. The semantics of the rule is that any data stored in
any field dereferenced from u at statement 36 is propagated to the successor statement 37, because
statement 36 does not modify u.
The rule set ∆F contains three push rules, each of which match a field-store statement. For

example the push rule ⎷u@35,∗⌄ → ⎷v@36, f ⋅ ∗⌄ encodes that any data stored in u@35 flows
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Table 4. The rule set ∆F of 𝒫F for the code shown in Figure 3.

Normal Rules

⎷u@35,∗⌄→ ⎷u@36,∗⌄ ⎷v@37,∗⌄→ ⎷v@38,∗⌄
⎷u@36,∗⌄→ ⎷u@37,∗⌄ ⎷v@38,∗⌄→ ⎷v@39,∗⌄
⎷u@37,∗⌄→ ⎷u@38,∗⌄ ⎷v@39,∗⌄→ ⎷v@42,∗⌄
⎷u@38,∗⌄→ ⎷u@39,∗⌄ ⎷v@38,∗⌄→ ⎷v@40,∗⌄
⎷u@39,∗⌄→ ⎷u@42,∗⌄ ⎷v@40,∗⌄→ ⎷v@41,∗⌄
⎷u@38,∗⌄→ ⎷u@40,∗⌄ ⎷v@41,∗⌄→ ⎷v@42,∗⌄
⎷u@40,∗⌄→ ⎷u@41,∗⌄ ⎷w@39,∗⌄→ ⎷w@42,∗⌄
⎷u@41,∗⌄→ ⎷u@42,∗⌄ ⎷w@41,∗⌄→ ⎷w@42,∗⌄
⎷v@36,∗⌄→ ⎷v@37,∗⌄

Push Rules

⎷u@35,∗⌄→ ⎷v@36, f ⋅ ∗⌄
⎷v@38,∗⌄→ ⎷w@39, g ⋅ ∗⌄
⎷v@40,∗⌄→ ⎷w@41, h ⋅ ∗⌄

Pop Rules

⎷w@36, f⌄→ ⎷x@37,ϵ⌄

to v@36 at the same time pushing f to the top of the stack. We also use the kleene-star notation,
because the field f is pushed, no matter which field is on the stack.

Each field-load statement matches a pop rule. The presented 𝒫F lists the pop rule ⎷w@36, f⌄→
⎷x@37,ϵ⌄. When variable w reaches statement 36, i.e., w@36 is propagated, and the stack topmost
element is the field f (the tracked data is stored at least below field f), the data-flow continues to
x@37, and field f is popped from the stack.

Based on 𝒫F, algorithm post∗ can answer reachability queries over the system described in
Table 4. The resulting post∗-saturated 𝒫-automaton, which we refer to by 𝒜F, contains field-
sensitive and flow-sensitive data-flow results5. We assume 𝒜F to initially contain the transition

u@35
ϵ
Ð→ ou@35. We label the accepting state of the automaton by ou@35, because it refers to the

abstract object stored in variable u at the beginning of method foo().
The transition labels of 𝒜F are elements of F, i.e., fields of the program. The abstract object

ou@35 is stored inside field f of variable v at the statement in line 36. The code then branches and
in line 39, variable v is stored inside field g of some object pointed-to by w, line 41 stores variable v

to field h of w. Therefore, at statement 42, the abstract object ou@35 is transitively accessible either
via access path w.g.f or via w.h.f. 𝒜F encodes this information as it accepts the two words6 g ⋅ f ⋅ ϵ
and h ⋅ f ⋅ ϵ starting from node w@42.
Next to the 𝒫-automaton, Figure 3 also shows the same data-flow analysis but encoded in a

data-flow graph for an access-path based analysis. The example code does not contain a loop
and only finitely many access paths are generated. Therefore, both representations encode the
same information, and there is a unique transformation between the two. For instance, 𝒜F accepts
configuration ⎷w@42,д ⋅ f ⋅ ϵ⌄. This configuration corresponds to the node with label w.g.f for
statement 42 in the access-path based representation on the right.
However, 𝒜F encodes the same information more concisely. The access-path representation

requires an explicit enumeration of the fields, w.g.f and w.h.f are encoded individually. Opposed
to that 𝒜F shares the information that prior to the branch the data-flow is stored in field f. 𝒜F
only needs to store the two transitions labeled д and h out of w@42. The outgoing transition of
the target node labeled by f encodes the remaining field of both the two access paths w.g.f and
w.h.f. The automaton 𝒜F concisely merges the information sharable between multiple data-flow

5For a simpler representation of the automaton, we merged states of transitions with the same field label of the automaton.
6An accepted word w = w1 ⋅ w2 ⋅ ⋯ ⋅ wn ∈ F

∗ of AF is a path from a some node to the accepting state such that the

concatenated transition labels form w .
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44 foo(a){

45 while(...){

46 b = new B();

47 b.f = a

48 a = b;

49 }

50 }

⎷a@46,∗⌄→ ⎷b@47, f ⋅ ∗⌄

⎷a@48,∗⌄→ ⎷a@45,∗⌄

oa@44

a@44

a@46b@47
a@48

ϵ

ϵ

f

f

Fig. 4. 𝒫F and its finite representation of an infinite set of access paths.

paths. It follows that the more branched field-store statements the analyzed code contains, the
more efficient the automaton representation is.

In Example 3.1, we have seen how 𝒫F carries the same information as a data-flow analysis based
on access paths. 𝒫F can, additionally, represent an infinite state space in a finite representation by
encoding the access paths in its automaton 𝒜F. Since 𝒜F represents infinitely many access paths, a
transformation into a data-flow graph with finitely many nodes is not possible.

Example 3.2. Figure 4 shows a reduced version of the code excerpt from TreeMap in Listing 1,
for which a data-flow analysis generates infinitely many access paths. The reduced excerpt also
generates infinitely many access path, as shown in the figure. We show how 𝒫F encodes the infinite
number of access paths within a concise 𝒫-automaton. On the other hand, an access-path based
analysis without k-limiting generates arbitrarily long sequences of access paths: a.f, a.f.f, a.f.f.f,
. . .

Figure 4 lists a subset of the rules of 𝒫F, and next to it, the relevant transitions of 𝒜F that post
∗

generates when tracing the abstract object oa@44. Initially, 𝒜F accepts the configuration ⎷a@44,ϵ⌄.
Between the statements from line 44 to line 46 variable a is not overwritten and configuration
⎷a@46,ϵ⌄ becomes accepting. Next, the push rule ⎷a@46,∗⌄ → ⎷b@47, f ⋅ ∗⌄ is applied and yields
the accepting configuration ⎷b@47, f ⋅ ϵ⌄. The statement in line 48 does not overwrite b and the
configuration flows transitively back to a@46, because the rule ⎷a@48,∗⌄ → ⎷a@45,∗⌄ encodes a
control-flow backward edge from the end of the loop to the entry of the loop in line 45. The normal
rules propagate the data-flow back to a@46 where post∗ algorithm inserts the self-loop edge with
label f for state a@46.

Once post∗ saturates 𝒜F, it encodes all sequences of possible access paths. When required, these
can be extracted from 𝒜F in the form of a regular expression. Assume we would like to know how
a@44 is accessible in line 48 from variable b, i.e. from the node b@48. Consider this node the initial
state of the automaton, then all path(s) to the accepting state are covered by the regular expression
(f)+. The data may be stored in any access path with base variable b and arbitrarily many field
accesses f.

This example shows that 𝒫F has a clear benefit over the a k-limited access path-based domain,
because it can easily represent infinitely many access paths without introducing imprecisions due
to over-approximation.

4 SYNCHRONIZED PUSHDOWN SYSTEMS

In Section 2 we discussed the call-PDS 𝒫S and in Section 3 the field-PDS 𝒫F. 𝒫S solves context-
sensitive and flow-sensitive data-flow analysis, and 𝒫F solves flow-sensitive and field-sensitive
analysis. However, 𝒫S is field-insensitive, and 𝒫F is context-insensitive, i.e., each system has a
precision advantage but also disadvantage over the other.
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51 bar(u, v){

52 v.h = u;

53 w = foo(v);

54 x = w.g;

55 y = x.f;

56 }

57 foo(p){

58 q.g = p;

59 return q;

60 }

bar() u v w x y

foo() p q

h
(53

д

)53
д f

Fig. 5. A code snippet and a labeled graph representation of the code.

This section presents the second contribution of this paper. We combine the results of 𝒫S and
𝒫F to construct one analysis that combines the precision benefit of each system. Intuitively, a
configuration of the more precise analysis is accepted only if 𝒜F and 𝒜S accept the configuration.

Definition 4. For the call-PDS 𝒫S ≙ (V,S,∆S) and the field-PDS 𝒫F ≙ (V × S,F ∪ {ϵ},∆F),
synchronized pushdown systems are a quintuple SPDS ≙ (V,S,F ∪ {ϵ},∆F,∆S). A configuration

of the SPDS extends from the configuration of each system: A synchronized configuration is a triple

(x , s, f ) ∈ V × S+ × F∗, which we denote as ⎷v . f1 ⋅ . . . ⋅ fm@ss1⋅...sn0 ⌄ where s ≙ s0 ⋅ s1 ⋅ . . . ⋅ sn and

f ≙ f1 ⋅ . . . fm . For synchronized pushdown systems we define the set of all reachable synchronized

configurations from a start configuration c ≙ ⎷v . f1 ⋅ . . . ⋅ fm@ss1⋅...sn0 ⌄ to be

postF
S
(c) ≙ {⎷w .д@t t1⋅...tn0 ⌄ ⋃︀⎷w@t0,д⌄ ∈ post

∗

F (⎷v@s0, f ⌄)

∧ ⎷w, t⌄ ∈ post∗S (⎷v, s⌄)}.

Hence, a synchronized configuration c is accepted if ⎷v, s0 ⋅ . . . ⋅sn⌄ ∈ 𝒜S and ⎷v@s0, f1 ⋅ . . . ⋅ fm⌄ ∈ 𝒜F
and postF

S
(c) can be represented by the automaton pair (𝒜S,𝒜F), which we refer to as 𝒜F

S
.

Example 4.1. Figure 5 shows a code snippet where data flows inter-procedurally and is stored
and loaded into a field of an object. Below the snippet, we depict a graph representation of the code
to help illustrate the data flow throughout the code. The nodes of the graph represent program
variables; horizontal edges between them correspond to field push and pop rules. The edges are

labeled with the names of the field. A field label with a line on top, e.g., f , means the field f is
loaded (a pop rule), for field-stores the field is not overlined (push rule). The vertical edges resemble
push and pop rules in 𝒫S. We label these edges with opening and closing parentheses. An opening
parenthesis "(" matches a push rule, the closing parenthesis ")" corresponds to a pop rule. The line
number in the subscript refers to the call site that is pushed to the stack.

Assume a context-, flow- and field-sensitive data-flow analysis to track the object pointed to by
u@51. We refer to this abstract object by ou@51. Additionally, assume we want to infer whether
ou@51 is accessible by y@55. The actual data-flow is best understood within the graph representation
which contains a path from u to y. The labels along this path concatenate to form the sequence

(or word) h ⋅ (53⋅д⋅)53 ⋅д ⋅ f . The parentheses (53 and )53 are properly matched. Therefore, the path
is realizable in terms of context-sensitivity, i.e., a valid execution path. However, the path is not
feasible in terms of field accesses. The field store д is properly matched against the load д, but the

field store h does not match the load of f . In other words, there is no data-flow connection between
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ou@51u

v

p58p

q

x

w

y

51,52,
53,54,
55

52,53,
54,55

53

57,58,
59

58,59

53,54,
55

54,55

55

ou@51

v@52h
u@51
u@52
u@53
u@54
u@55

q@58д
p@57
p@58
p@59
v@52
v@53
v@54
v@55
x@54
x@55

q@58
w@53
w@54
w@55

ϵhд

Fig. 6. The post∗ saturated 𝒜S (le�) and 𝒜F (right) for the example in Figure 5.

u@51 and y@55, which means the latter does not point to ou@51. Synchronized pushdown systems

prove the same as ⎷y.ϵ@55ϵ⌄ ∉ postF
S
(⎷u .ϵ@51ϵ⌄).

For the data-flow analysis we construct 𝒜F
S
≙ (𝒜S,𝒜F) such that the automaton accepts the

configuration ⎷u.ϵ@51ϵ⌄. Therefore, ⎷u, 51⌄ ∈ 𝒜S and ⎷u@51,ϵ⌄ ∈ 𝒜F. The set post
F

S
(⎷u .ϵ@51ϵ⌄)

is then represented by the two automata depicted in Figure 6. 𝒜S accepts the configuration ⎷x, 54⌄
and 𝒜F accepts ⎷x@54,h ⋅ ϵ⌄. Therefore, the synchronized configuration ⎷x.h ⋅ ϵ@54ϵ⌄ is accepted.
Since 𝒜F

S
is constructed based on the initial synchronized configuration ⎷u.ϵ@51ϵ⌄, accessing field

h of x (line 55) retrieves the same object as stored in variable u at statement 51. In other words, object
ou@51 is accessible via access path x.h after statement 54. The next line, statement 55, loads the
field f of variable x. Due to the field load statement, 𝒫F lists the pop rule ⎷x@54, f⌄→ ⎷y@55,ϵ⌄.
𝒜F does not contain a transition out of state x@54 with label f. Therefore, the pop rule cannot be
applied, consequently y@55 does not become a state of 𝒜F.

Despite 𝒜S accepting the configuration ⎷y, 55⌄, ⎷y@55,ϵ⌄ is not an accepted configuration for
𝒜F. In turn, ⎷y.ϵ@55ϵ⌄ ∉ postF

S
(⎷u .ϵ@51ϵ⌄).

4.1 Undecidability and Required Approximations

The “synchronized” combination of the two automata, as we presented it above, raises the question
whether a tighter integration of both automata would not be possible and beneficial. Unfortunately,
as Reps [2000] showed, context-sensitive data-dependence analysis is generally undecidable: it can
be mapped to a reachability problem on a graph with two interleaved context-free languages (CFL),
which means a word formed along one path in the graph must form a correct word in both CFLs. In
Example 4.1 we have seen that a context- and field-sensitive data-flow analysis is equivalent to a

reachability problem of two CFLs: one language (LF) for field stores and loads (e.g., f and f ), and a
second one (LS) matching call and return flows (e.g., (53 and )53).

An SPDS presents a decidable construction (conjunction of the setspost∗
S
andpost∗

F
) and therefore

must over-approximate the fully precise context-sensitive and field-sensitive analysis solution.
The SPDS computes both sets along potentially different control-flow paths which introduces an
over-approximation in cases in which improperly matched calls in a target program induces a
properly matched field accesses. The following example demonstrates the potential precision loss.

Example 4.2. Figure 7 extends the code snippet provided in Figure 5 with two new methods. The
method baz(), similar to bar(), calls foo() after storing a field, and the method qux() that calls
both methods baz() and bar() (lines 62 and 63). The first parameter of both calls from qux() to
baz() and bar() is the same variable a. Below the code, we also show the complete and updated
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61 qux(a, b, c){

62 bar(a, b);

63 baz(a, c);

64 }

65 baz(r, s){

66 s.f = r;

67 t = foo(s);

68 }

bar u v w x y

foo p q

baz r s t

h
(53

д

)53
д f

f

(67 )67
qux a

(63

(62

Fig. 7. Code snippet that extends the Example 4.1 from Figure 5 and the updated graph representation.

graphical representation for the code of Figure 7. The earlier representation is extended with the
variable nodes for baz() and qux() and the respective edges.

Assume we want to know if there is a data-flow path from a to y. The graph contains two paths

between the nodes. One path that contains node u generates the wordw1 ≙ (62⋅h ⋅ (53⋅д⋅)53 ⋅д ⋅ f .

The sequence of labels along the other path formsw2 ≙ (63⋅f ⋅ (67⋅д⋅)53 ⋅д ⋅ f . In combination, both
paths introduce imprecision into the analysis, because they make the analysis report a flowing to y,
despite it being impossible at runtime.
Along the path of the word w1, and since more opening parentheses are acceptable, the call

parenthesis are properly matched, (62(53)53. However, the field stores and loads are not properly

matched, h ⋅д ⋅д ⋅ f . For the second path with the wordw2, the situation is the other way around.

The field stores and loads are properly matched, h ⋅д ⋅д ⋅h, while the call parentheses of the word
do not match, (63⋅(67⋅)53.

To conclude, the set post∗
S
contains all nodesm reachable from an entry node n of the graph such

that the word on a path p1 between n andm forms a word in LS. Further, post
∗
F
contains all nodes

m such that a path p2 from n tom forms a word in LF. However, the path p1 and p2 may differ.

As we showed, it is possible to construct examples where synchronized pushdown systems do
not precisely solve the data-flow problem. Yet, our empirical evaluation reveals no practical
occurrence of this over-approximation. Therefore, we are confident that our hypothesis is true:
An improperly matched call site does not induce a properly matched field access (and vice
versa).

4.2 Worst-Case Complexity Analysis

We next discuss the worst-case complexity for the computation of postF
S
(c) for SPDS, and compare

it to a context-sensitive and flow-sensitive analysis that uses a k-limited access-path representation.
For the comparison we encode the latter analysis as an analysis based on a single pushdown

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 48. Publication date: January 2019.



48:16 Johannes Späth, Karim Ali, and Eric Bodden

system. For a pushdown system 𝒫 ≙ (P , Γ,∆), algorithm post∗ constructs the 𝒫-automaton 𝒜 ≙
(Q, Γ,δ ,P , F) with a complexity of 𝒪(⋃︀P ⋃︀ ⋃︀∆⋃︀ (⋃︀Q ⋃︀ + ⋃︀∆⋃︀) + ⋃︀P ⋃︀ ⋃︀δ ⋃︀) for both time and space [Esparza
et al. 2000].

Synchronized Pushdown Systems. A SPDS computes two independent post∗ sets for 𝒫F and 𝒫S,
hence the worst-case complexity is the maximum of any of the two post∗ computations. The control
locations of 𝒫S are the program variables involved in queried data flows, an upper bound of which
is ⋃︀P ⋃︀ ≙ ⋃︀V⋃︀. The out-set of a data-flow at an assignment statement has at most two7 variables. For
every other statement, the out-set contains one or zero elements. There is a data-flow for every
edge (at most ⋃︀S⋃︀2) in the inter-procedural control-flow graph, and the number of rules can be
approximated by ⋃︀∆⋃︀ ≙ 2⋃︀V⋃︀⋃︀S⋃︀2. 𝒜S has one state per variable and an intermediate state for each
variable that flows at a call site to a callee, hence the number of𝒜S states ⋃︀Q ⋃︀ ≙ ⋃︀V⋃︀ + ⋃︀V⋃︀⋃︀S⋃︀ ≤ 2⋃︀V⋃︀⋃︀S⋃︀.
Each transition of 𝒜S is labeled by a statement, and 𝒜S has at most ⋃︀δ ⋃︀ ≙ 4⋃︀V⋃︀2⋃︀S⋃︀3 edges and
computing post∗ for 𝒫S has a worst-case complexity of

𝒪(⋃︀V⋃︀2⋃︀S⋃︀2(⋃︀V⋃︀⋃︀S⋃︀ + ⋃︀V⋃︀⋃︀S⋃︀2) + ⋃︀V⋃︀3⋃︀S⋃︀3) ≙ 𝒪(⋃︀V⋃︀3⋃︀S⋃︀4).

The control locations of 𝒫F are pairs of variables and statements, and we approximate ⋃︀P ⋃︀ ≙ ⋃︀V⋃︀⋃︀S⋃︀.
In practice, the variable of a control location of 𝒫F must be local to the method of the statement
of the control location, which greatly reduces the size of the set P . The number of rules of 𝒫F is
bounded by ⋃︀∆⋃︀ ≙ 2⋃︀V⋃︀⋃︀S⋃︀2⋃︀F⋃︀, because at an assignment statement the analysis applies at most two
rules for every field. In the worst case, for each variable at each statement, a push rule creates an
intermediate state which bounds the states of 𝒜F by ⋃︀Q ⋃︀ ≙ ⋃︀V⋃︀⋃︀S⋃︀⋃︀F⋃︀. The size of the transitions set
of 𝒜F can be approximated by ⋃︀δ ⋃︀ ≙ 4⋃︀V⋃︀2⋃︀S⋃︀2⋃︀F⋃︀3, because, between each of the states, there can be
a transition labeled by a field. From these approximations, the complexity of the computation of
post∗ for 𝒫F evaluates to 𝒪(⋃︀V⋃︀

2⋃︀S⋃︀3⋃︀F⋃︀(⋃︀V⋃︀⋃︀S⋃︀⋃︀F⋃︀ + ⋃︀V⋃︀⋃︀S⋃︀2⋃︀F⋃︀) + ⋃︀V⋃︀3⋃︀S⋃︀3⋃︀F⋃︀3) which reduces to

𝒪(⋃︀V⋃︀3⋃︀S⋃︀5⋃︀F⋃︀2 + ⋃︀V⋃︀3⋃︀S⋃︀3⋃︀F⋃︀3). (1)

This complexity dominates the complexity for 𝒫S, therefore, the worst-case complexity for SPDS
is the same as of 𝒫F.

Access Paths with k-limiting. For comparison, we assume the k-limited access-path based analysis

(APk ) to be encoded as a pushdown system similarly to 𝒫S, i.e., call sites correspond to push-rules
and return statements to pop-rules of the system. Instead of using variables (V) as control locations,
the control locations for the k-limited analysis are access paths, i.e., a local variable followed by a k-

limited sequence of fields. Hence it is ⋃︀P ⋃︀ ≙ ⋃︀V⋃︀⋃︀F⋃︀k . The size of the rule set is at most ⋃︀∆⋃︀ ≙ 2⋃︀V⋃︀⋃︀F⋃︀k ⋃︀S⋃︀2

because, for every edge of the control flow graph, an access path is mapped to at most two access
paths.8 The pushdown system’s stack alphabet is S, which limits the size of the state set of the

𝒫-automaton to ⋃︀Q ⋃︀ ≙ 2⋃︀V⋃︀⋃︀F⋃︀k ⋃︀S⋃︀, and the size of the transitions set to ⋃︀δ ⋃︀ ≙ 4⋃︀V⋃︀2⋃︀S⋃︀3⋃︀F⋃︀2k . For APk

it results a worst-case complexity of 𝒪(⋃︀V⋃︀2⋃︀S⋃︀2⋃︀F⋃︀2k(⋃︀V⋃︀⋃︀S⋃︀⋃︀F⋃︀k + ⋃︀V⋃︀⋃︀S⋃︀2⋃︀F⋃︀k) + ⋃︀V⋃︀3⋃︀S⋃︀3⋃︀F⋃︀3k) which
simplifies to

𝒪(⋃︀V⋃︀3⋃︀S⋃︀4⋃︀F⋃︀3k + ⋃︀V⋃︀3⋃︀S⋃︀3⋃︀F⋃︀3k). (2)

We now compare the analysis complexity of APk (2) to the complexity of SPDS (1). The complex-

ities differ in two parts. First, APk multiplies the exponent of all ⋃︀F⋃︀ factors by the value k . Second,
SPDS increases ⋃︀S⋃︀4 to ⋃︀S⋃︀5. The additional factor ⋃︀S⋃︀ is introduced by automaton 𝒜F, as its states
refer to statements in addition to variables.
7At a field-store statement x .f ← y , we assume y to flow to x only but not to any alias of x . We discuss aliasing in Section 5.
8As for SPDS, we also ignore aliasing here.
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69 foo(){

70 u = new;

71 v = u;

72 x = new;

73 u.f = x;

74 y = v.f;

75 }

Direct Flow

Indirect Flow

Store to the heapS

Injection of Aliases

o70

vu
o72

u.fx v.f y

S

Fig. 8. Over-coming non-distributivity of points-to analysis using points of aliasing.

It is expected that for some k > 0 SPDS is more performant than APk for data-flows that are
assigned to many fields and at the same time reach few statements. Additionally, the complexity

estimates show that the larger k the more time and space APk requires. In Section 6 we show that

in practice SPDS are almost as efficient as APk when k ≙ 1, although SPDS deliver results as precise

as APk with k ≙ ∞.

5 INSTANTIATIONS OF SYNCHRONIZED PUSHDOWN SYSTEMS

To showcase that SDPS are applicable in a broader context, we present two instantiations, one for
points-to and one for typestate analysis. Both instantiations track pointers throughout the program,
and both are based on prior work that uses an access-graph based representation [Padhye and
Khedker 2013; Späth et al. 2016]. We here present their corresponding synchronized pushdown
systems.

5.1 Points-To Analysis

Points-to analysis is a fundamental form of static data-flow analysis that is required by many
standard analyses such as call graph construction, taint analysis, and typestate analysis. A points-
to analysis computes points-to sets for program variables, where a points-to set element is an
allocation site a, i.e., a statement of the form a ∶ x ← new . Those allocation sites abstract the
potential objects that the variable may point to at runtime.

Precise points-to information is challenging to compute. In particular, it is non-distributive [Pad-
hye and Khedker 2013; Späth et al. 2016]: At field-store statements of the form x . f ← y, not only
is the content of x . f changed, but the statement can also change the contents of other variable’s
fields, for instance, z. f if x and z alias. This aliasing decision requires access to pointer information
for both x and z, which leads to non-distributive flow functions.

Späth et al. [2016] present a way tomodel large parts of the pointer analysis within the distributive
framework IFDS [Reps et al. 1995]. The same concept is also applicable to SPDS which uses
distributive flow functions, and consequently, one can compute points-to information using SPDS.

Example 5.1. Figure 8 presents a minimal example showcasing non-distributivity of pointer
information. The code snippet allocates two objects o70 and o72 in lines 70 and 72, respectively. At
runtime, variables x and y point to the same object o72.
The trick in using SPDS to solve a pointer-analysis problem is to use not one single SPDS but

one SPDS instance per allocation site. The figure thus depicts the data-flows computed by postF
S
for

two SPDS, in the boxes that are labeled with the corresponding object. Points-to information can be
extracted from the data-flow graphs nodes for o70. For example, the graph for object o70 contains
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nodes u and v at the statement in line 73. This means that all these variables at the respective
statement point to the object o70.
The SPDS for o72 encodes only the object’s direct assignments, e.g., that o72 flows to variable x

and access path u.f. To deal with possible aliasing at the heap assignment in line 73, the SPDS for
o72 thus interacts with the one for o70, because that SPDS contains the base variable of the store
(u). Through the SPDS for o70, we learn that at the same statement v may accesses the same object.
This alias information is then passed to the field-store statement S within o72, causing the analysis
to add an indirect data-flow edge from u.f to v.f at that statement. Due to the indirect-flow edge,
the data-flow graph for o72 then encodes a path to variable y, indicating that after statement 74
variable y points to o72.

Encoding pointer-analysis in this distributive manner has one big advantage, no matter whether
one uses IFDS or SPDS: Non-distributive analyses propagate sets of access paths (or graphs), which
can cause an exponential growth in the abstract domain. The distributive encoding avoids this
growth by instead tracking allocation sites individually. The use of SPDS can improve over the use
of IFDS by the PDS-based encoding of field-sensitivity, as explained in Section 4.2. Our evaluation
in Section 6 shows that this encoding, in practice, can greatly benefit performance.

5.2 Weighted Pushdown System for Typestate Analysis

A typestate analysis reasons about the states of an object of a particular type by following the
data-flow path of an object and discovering paths along which the application programming
interface (API) of the object is not used according to its specification [Strom and Yemini 1986].
Typical examples are files that remain open and leak resources or collection APIs throwing runtime
exceptions when a developer accesses an element prior to inserting any.
Weighted pushdown systems (WDPS) extend pushdown systems by weights. A weight is an

element of an idempotent semi-ring (W ,⊗,⊕). In a weighted pushdown system 𝒫 , each rule carries
a weight and, for the weighted version of a system, the 𝒫-automaton encoding the set post∗ is
lifted to a weighted automaton, where each transitions maps to a weight. The binary operator
“combine” (⊕ ∶W ×W →W ) of the semi-ring is used when two weights are joined at control-flow
join points, while “extend” (⊗ ∶W ×W →W ) composes the weights along the data-flow paths.
Some problems long known to be computable by WPDS include linear constant propagation

or computing a shortest witness path alongside the data-flow [Reps et al. 2007]. Recently, Späth
et al. [2017] showed that typestate properties can be solved using Interprocedural Distributive
Environments (IDE) [Sagiv et al. 1996] and those can be mapped to weighted pushdown systems.
For a typestate analysis, it is crucial to trace all aliases to the tracked object, as this allows to

compute strong updates. In their framework called IDEal , Späth et al. [2017] propose to track
all pointers to an object using access graphs. The access-graph formulation in their work can be
replaced by SPDS. The typestate information of the object is then encoded as weights of any of the
two pushdown systems, we chose to propagate weights along the call-PDS 𝒫S. Our evaluation in
Section 6 uses this data-flow analysis client.

5.3 Backward and Demand-Driven Analyses

In this paper, we discuss synchronized pushdown system as a forward-directed analysis that com-
putes the variables and the access paths an object is propagated to. Synchronized pushdown systems
can easily be applied to perform a backward analysis that computes field-sensitive information
where the content of a variable originates from.

There are two ways to reverse the direction of the data-flow. One option is to reverse the direction
of the control-flow graph and to invert the rules of 𝒫S and 𝒫F as Bodden [2012] suggests. An
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alternative solution is to replace post∗ with an algorithm called pre∗ [Esparza et al. 2000] which
computes a 𝒫-automaton representing the set pre∗(c) ≙ {c′ ⋃︀ c′ ⇒∗ c}.
Precise context-, flow and field-sensitive points-to analyses are frequently too inefficient to

compute for the whole program. As client analyses (e.g., taint or typestate) frequently require
points-to information only for some variables, a demand-driven points-to analysis can be achieved
by computing the “demand” for pointer information using a SPDS-based backward analysis, and
then answering those on-demand queries using a forward analysis [Bodden 2018; Späth et al. 2016].
For our evaluation, we also implemented a demand-driven points-to analysis (based on inverting
control-flow and the rules) and compare it to an existing demand-driven one which is based on
access graphs.

6 EVALUATION

We have used SPDS to implement a demand-driven pointer analysis and a typestate analysis, as
sketched in Section 5. The implementation constructs 𝒫F and 𝒫S on-the-fly by successively adding
rules as required. Also the set postF

S
is constructed dynamically. The implementations of the pointer

analysis, the typestate, and our artifact are publicly available.9

In our evaluation, we compare the version implemented as SPDS to the state-of-the-art analyses

Boomerang [Späth et al. 2016] and IDEal [Späth et al. 2017]. All analyses are implemented based

on top of Soot [Lam et al. 2011], allowing us to compare them on equal grounds. IDEal models the
heap using access graphs. Boomerang can be configured to use k-limiting or access graphs. Our
evaluation compares these abstractions to SPDS through the following research questions:

● RQ1: How does the number of field accesses on the data-flow path of a demand-driven
pointer query relate to the time taken to compute the query’s results?
● RQ2: In terms of performance and precision, how does a SPDS-based typestate analysis

perform in comparison to an IDEal -based typestate analysis?
● RQ3: How does the number of methods and field-stores, i.e., push-rule applications, along a
data-flow path influence the typestate-analysis time for an abstract object?

6.1 RQ1: Scalability with Respect to Field Accesses

In this experiment, we compare a demand-driven pointer analysis based on SPDS (Section 5) to
Boomerang in a controlled lab environment. Boomerang can be configured to use either k-limiting
or access graphs as the field abstraction. We control the number of field accesses along the data-flow
path of a pointer query to demonstrate the differences between the field abstractions when the
number of field accesses increases. To complement the worst-case complexity analysis in Section 4,
we measure how an increase in the number of field accesses affects the query’s analysis time in
practice.

Experimental Setup. In Section 1, we show an example using java.util.TreeMap, in which a
data-flow analysis generates all combination of access paths T ≙ {this. f1. f2.⋯. fn .value ⋃︀ fi ∈
{right, left, parent},n ∈ N}. We extracted a minimal code pattern from the TreeMap implemen-
tation that provokes a similar state explosion in the set of generated access paths. We also made
the number of field accesses along the data-flow parametrizable and arrived at the code shown for
method stateExplosion1() in Figure 9. The code is designed to provoke a state explosion for the
static data-flow analysis when points-to information for variable t is queried after line 86. The
backward analysis outputs the three allocations in line 77 as allocation sites for t. From there, a

9https://github.com/CROSSINGTUD/WPDS and https://github.com/secure-software-engineering/SPDS-experiments
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76 stateExplosion1() {

77 Node x,p,t = new Node();

78 while(...){

79 if(...){

80 x.a1 = p;

81 }

82 p = x;

83 }

84 if(...){

85 t = x.a1;

86 }

87 }

88 stateExplosion2() {

89 Node x,p,t = new Node();

90 while(...){

91 if(...){

92 x.a1 = p;

93 } else if(...){

94 x.a2 = p;

95 }

96 p = x;

97 }

98 if(...){

99 t = x.a1;

100 } else if(...){

101 t = x.a2;

102 }

103 }

Fig. 9. Example code for EXPL1 and EXPL2 that provokes state explosions for access-path based domains.
EXPL1 contains a single field-store and a single field-load of the field a1, EXPL2 contains additional accesses
to a2.

precise forward analysis generates all access paths in the set {x. f1. f2.⋯. fm ⋃︀ fi ∈ {a1},m ∈ N}. This
result is due to the fact that the while-loop assigns x to p but also stores p in a field of x.

The code snippet allows one to parametrize the number of field accesses. By duplicating both if

blocks (lines 79–81 and lines 84–86) and replacing the field a1 of the field-store and load by another
field, for example a2, the complexity of the data-flow increases as data flows to all access paths
within the set {x. f1. f2.⋯. fm ⋃︀ fi ∈ {a1, . . . , an},m ∈ N}. We call the program with n field accesses
EXPLn . In Figure 9, the code for EXPL2 is depicted as method stateExplosion2().
For this performance experiment, we stepwise scale the number of fields accesses n in the

program EXPLn and trigger points-to queries to Boomerang and the points-to analysis based on
SPDS. We run the Boomerang queries with access graphs and with k-limited access paths with
values k ≙ 1, . . . , 5. Each analysis query computes the points-to set of variable t after statement 86.
We measured the analysis time for each query.

Results. The chart in Figure 10 plots the results for this experiment. The number of fields of
EXPLn on the x-axis is plotted against the analysis time on the y-axis. The chart depicts 7 line
plots, one for the demand-driven pointer analysis based on SPDS, one for Boomerang using access

graphs and 5 lines for APk with k ≙ 1, . . . , 5. A first observation is that the analysis times of access
graphs increases exponentially when more than 5 fields occur along the data-flow. With n ≙ 5, the
access-graph-based analysis already takes 17 seconds to terminate. For n ≙ 6, the queries hit the
budget of 50 seconds.

We next compare the access-path-based analyses to SPDS. APk=1 is slightly more efficient than

SPDS but generally also less precise when data flows through more than a single field. Lastly,APk=3
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Fig. 10. The number of relevant field accesses for a data-flow analysis and its effect on the analysis time.

is roughly as performant as the one with access graphs. However, an increase of k to 4 and 5 yields
to analyses with worse performance.
SPDS also clearly outperforms the access-graph model in this experiment. The line for SPDS

shows a quadratic growth when using SPDS, and, even for n ≙ 18, the data-flow query finishes in
43 seconds.

This experiment shows the benefit of using SPDS opposed to access graphs or k-limiting when
data flows through a sequence of fields-stores. This experiment showcases that the explosion of
the size of the data-flow domain directly relates to the analysis time. Compared to both k-limiting
and access graphs, for a code pattern that generates loops within the access paths, SPDS always
pays off.

Summary. When data flows through five or more nested field-stores, SPDS are more efficient than
representations using access paths or access graphs. SPDS show a performance close to k-limited
access paths with k ≙ 1 although their precision corresponds to k ≙ ∞.

6.2 RQ2: Precision and Performance of a Typestate Analysis Client

The next experiment compares an SPDS-based typestate analysis to a typestate analysis based on

IDEal on a realistic benchmark. IDEal propagates access graphs, and we want to understand how

often the cases discussed in RQ1 occur in practice. We re-implemented IDEal using SPDS and refer

to this variant as IDEal
P
.

Experimental Setup. We conducted our experiments using theDaCapo 2006 benchmark suite [Black-

burn et al. 2006]. DaCapo is widely used in static-analysis benchmarking. The setup for IDEal and

IDEal
P

is identical. We include all libraries, which includes the Java Runtime Environment in version
1.8.0_162. DaCapo contains 11 Java programs of reasonably large size, varying between 1,725 and
5,923 call-graph reachable methods (as computed by Spark [Lhoták and Hendren 2003]).

The implementation of IDEal ships with a set of typestate specifications for Vector, Iterator,
and IO. The specification for Vector checks that an element is not accessed when the vector is
empty. The specification for Iterator detects calls to next without first checking the existence of
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Table 5. Statistics of a typestate analysis performed in IDEal ( ) and IDEal
P

( ) on the DaCapo 2006 benchmark
programs. A row containing a dash in column Objects means no object (allocation site) was found in the
program and no statistics are collected. Note: the analysis includes all libraries.
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the next element using hasNext. The typestate specification IO concerns Input and Output streams
which must be correctly closed after usage.

Using these typestate specifications, we applied both IDEal and IDEal
P
to each program in DaCapo.

Both analyses generate a context-insensitive call-graph using Spark [Lhoták and Hendren 2003],
determine all abstract objects, i.e., allocation sites, of type Vector, Iterator, and IO, and execute
a static analysis per abstract object. Aliasing at heap accesses and strong updates of typestate
information are resolved through Boomerang-based points-to queries.
We ran this experiment on a 2.3 GHz Intel Core i7 machine, and we granted 12 GB of heap

memory to the JVM. During the computation, we record two statistics about the data-flow of each
abstract object. First, the number of Visited Methods: a method is visited if at least one data-flow fact
is generated in this method. Second, the Nesting Depth of an object which is the maximal number
of fields the object is stored in and is computed as the length of the longest acyclic path in 𝒜F.
If 𝒜F does not contain a cycle, this number corresponds to the minimal value for k-limiting that
avoids approximation. To limit the total analysis time to an acceptable time budget for programs
using many abstract objects, we limit the computation of the data-flow for each abstract object to
10 minutes.

Precision Results. SPDS is based on the hypothesis that an improperly matched call site does not
induce a properly matched field access and vice versa. SPDS over-approximates when the target
program contains two distinct paths d1 and d2 such that d1 properly matches one language (LF or
LS) but does not match in the second language and conversely for path d2 (see Section 4.1). For the

typestate analysis IDEal
P
, this over-approximation would lead to an additionally reported finding

(false positive) in comparison to IDEal , because it would cause the analysis to construct an invalid
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data-flow path. Yet, for all objects for which IDEal and IDEal
P

terminate (464 out of 819 objects),
both analyses report the same results. This evidence shows that our hypothesis is true in practice.

Späth et al. [2017] has a more detailed discussion of the general precision of IDEal .

Performance Results. Table 5 lists the results of the typestate analysis grouped by the three
typestate properties (IO, Vector, and Iterator) on the DaCapo benchmark suite. Each row of the
table corresponds to one program. For each property, column Objects lists how many Vector,
Iterator, or IO allocation sites the program contains in the pre-computed call-graph. Column
Visited Methods shows the average number of methods visited when computing the data-flows for
all objects. The column Nesting Depth represents the average nesting depth of all objects. The last
three columns reflect the analysis time: The column Total Time lists the complete analysis time on
the benchmark (excluding call-graph construction time). The column Timeouts shows the number

of objects for which the data-flow analysis exceeded the budget of 10 minutes, the last column,
Rel. Timeouts shows the fraction of those objects over all analyzed ones. The last three columns,
Total Time, Timeouts, and Rel. Timeouts are split horizontally into two rows per program. For each

program, the upper row contains data for the original IDEal implementation, and the lower row

contains data for IDEal
P
.

For example, the program Antlr allocates a total of 17 objects related to IO, e.g., of type
FileInputStream or FileOutputStream. Across these 17 objects, on average, the data-flow path visits
12 methods and stores the object within 4 unique fields, indicating that an access path of length at

least 4 is required for a precise analysis. For 5 of the 18 analyzed objects, IDEal times out, whereas

IDEal
P

does not time out on any object. This leads to a total analysis time of 4,023 seconds for IDEal

opposed to only 15 seconds for IDEal
P
.

The results show that IDEal
P

outperforms IDEal for the typestate properties IO and Iterator on
all DaCapo benchmarks in terms of the total analysis time and the number of timeouts. On average,

IDEal
P

is 83× more efficient than IDEal for the property Iterator. For the IO property, IDEal
P

is 64×

more efficient. For the typestate property Vector, IDEal
P

outperforms IDEal only by a factor of 1.8×.
We discuss the large difference in these factors in more details in RQ3.

The timeouts dominate the overall analysis time. Switching from IDEal to IDEal
P

reduces the
timeouts from 160 to 28 for all 298 IO objects, and from 57 to 25 for the 125 Vector objects. For

the 396 Iterator object data-flows, the difference is most significant: with IDEal , a total of 137

data-flows time out, while only 3 time out with IDEal
P
.

In RQ1, we constructed the programs EXPLn that provoke the state explosion on the data-flow
domains by nesting an object in up to n fields. The values for nesting depth in Table 5 range up to
k ≙ 13 and indicate that nesting an object in up to 13 fields, i.e., EXPL13, is realistic in the case of a
typestate analysis.

Summary. The over-approximations introduced by SPDS do not occur for the typestate analysis

IDEal
P
on the DaCapo benchmark programs, and IDEal

P
outperforms the access-graph-based analysis

IDEal in terms of analysis time, while timing out on only 6.8% (56 out of 819) object data-flows.

6.3 RQ3: Influencing Dimensions for IDEal and IDEal
P

We next seek to relate the theoretic worst-case complexity results from Section 4 to the practical
performance results we obtained. For access-path and access-graph-based analyses, the more field
stores are involved in a data-flow path of an object, the higher the expected analysis time for the
object is. While the time also increases for SPDS, due to the concise representation of 𝒜F, it is
expected that the time is affected less heavily. On the other hand, for data-flows that reach more
statements (or equivalent methods), SPDS is expected to have a higher complexity.
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Fig. 11. Relating the analysis times to the number of visited methods and the nesting depth along objects

data-flow for IDEal
P

and IDEal .

Experimental Setup. In addition to the experimental setup discussed in RQ2, we measured the
analysis time per object data-flow to evaluate this influence in practice. Measuring the analysis
time for individual abstract objects allows us to cluster based on other recorded statistics (visited
methods and nesting depth) of the object data-flows.

Results. First, we explain the variance in the performance reported in Table 5 across the typestate
properties by relating the Timeout column to the columns Visited Methods and Nesting Depth.

IDEal
P
timed out in only 3 of the 396 Iterator objects, and, in total, timed out in only 42 cases.

This is a significant reduction, which we explain as follows. For all benchmarks, the number of
visited methods for the typestate Iterator is relatively low. On average, an Iterator object is alive
across 5–23 methods. These methods include the factory calls where the Iterator is allocated, as
well as their constructors. Ignoring loops, Iterator objects are nested in other object’s fields in a
depth between 1 and 10. The access paths required for Iterator are also cyclic. For example, for
the benchmark program Eclipse, the following access path is required to be tracked

config.this$0.ig.nodes.map.tail.parent.next.prev.right

where the part tail.parent.next.prev.right can occur in any arbitrary order. As the automaton

for an access graph may slightly vary at each statement, IDEal must store the automaton at every

statement and eventually times out. On the other hand, in IDEal
P
, the automaton 𝒜F represents all

these access paths at every statement concisely in a single automaton.

The Vector typestate property is the other extreme. The performance gains through IDEal
P
are

less significant. As data containers, Vector objects are expected to have a longer lifetime than
Iterator objects. In Table 5, the number of visited methods for Vector objects ranges from 17 to
659.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 48. Publication date: January 2019.



Context-, Flow-, and Field-Sensitive Data-Flow Analysis . . . 48:25

Thismotivates a second representation of the data set. In Figure 11, we group all objects, regardless
of their type, into buckets, depending on the nesting depth and the number of visited methods
along their data flows. The visited methods are plotted along the y-axis, and the number of fields
along the x-axis. We subdivide both axes into five equally long ranges which generates a total of 25
buckets.
For each bucket, we report two statistics. The first is the number of objects contained in the

bucket, indicated by the value below the meandered line in the diagram. The second statistic is the
average analysis time of the objects within this bucket, which is indicated by the number above
the meandered line. Timeouts are included in the average with their 10 minutes. We also visualize
these statistics as circles associated to the bucket. The diameter of the circle corresponds to the
number of objects contained in a bucket. The more opaque a circle is, the more time the analysis

took on average across the objects. Figure 11 shows a diagram for IDEal
P

on the left and for IDEal

on the right.

The diagram shows two important characteristics. First, for the vast majority of objects, IDEal
P

significantly reduces the analysis times compared to IDEal . Second, the more Visited Methods a

data-flow spans, the larger the time budget the analysis requires. While this holds for IDEal and

IDEal
P
, the number of field-stores along the data-flow paths does influence the analysis times more

heavily for IDEal .

IDEal
P
shows the largest speedups for the bottom part of Figure 11. In other words, switching

from access graphs to SPDS benefits data-flows which span few methods, no matter how deeply the

object is nested. IDEal
P

effectively reduces the analysis time for all buckets whose visited method
range is [1-340]. Figure 11 shows that the majority of data-flows fall into this range, which contains
742 out of all 819 objects and require only a fraction of all call-graph reachable methods for the
analysis.

Additionally, Figure 11 shows that IDEal
P
times out slightly more often when the number of visited

methods increases. This observation aligns with the worst-case complexity analysis. Scaling into
this direction is an orthogonal challenge to the work presented in this paper. However, pushdown
systems enable a range of optimizations, for example summarization [Lal and Reps 2008] where
sub-automata of 𝒜S (or 𝒜F) are shared across multiple post∗ computations. Orthogonal to these
optimizations, we are currently investigating how demand-driven call-graph refinement [Sridharan
and Bodík 2006] may help reduce the remaining timeouts.

Summary. The number of visited methods and the number of fields participating in the data-flow

are the influencing factors for the analysis times for IDEal
P
. However, the number of visited methods

has a higher impact and SPDS is most advantageous in situations where the data-flow spans few
methods but flows through many fields.

7 RELATED WORK

There are various approaches for encoding context-sensitive and field-sensitive (but mostly flow-
insensitive) alias or points-to analyses as twoCFL-reachability (or Dyck-reachability) problems [Chat-
terjee et al. 2018; Sridharan and Bodík 2006; Sridharan et al. 2005; Xu et al. 2009; Zhang et al. 2013].
To guarantee decidability, all the CFL-formulations over-approximate either the CFL for field
stores/loads or the CFL for call/returns. We refer to surveys on alias analysis and respective heap
abstractions [Kanvar and Khedker 2016; Sridharan et al. 2013] for more detailed comparisons.
Analyses that are flow-insensitive are expected to be more memory-efficient, because persisting
a single data-flow fact per method suffices. For flow-sensitive data-flow clients, e.g., a typestate
analysis that performs strong updates, the results are insufficiently precise [Fink et al. 2008; Späth
et al. 2017].
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In recent work, Zhang and Su [2017] introduce linear conjunctive language (LCL) reachability and
show how the interleaved matching-parentheses problem of field-sensitive and context-sensitive
data-flow analysis can be over-approximated by a LCL. Their work presents a new algorithm to
solve LCL-reachability, instead, we show that we can formulate the problem in two pushdown
systems and rely on existing algorithms and improvements [Esparza et al. 2000; Lal et al. 2005; Reps
et al. 2016]. Zhang et al. also base their approach on the hypothesis that we discuss in Section 4.1.
Hence, our evaluation also delivers additional evidence for their work.

Control-flow analysis is a technique to analyze languages that allow higher-order functions as first
class elements of the language. Data-flow analyses of target programs using higher-order functions
require constructing control-flow (i.e., call graph) dynamically to be precise. CFA2 [Vardoulakis and
Shivers 2010], PDCFA [Earl et al. 2012], and P4F [Gilray et al. 2016] are analyses targeted at dynamic
exploration of control-flow. In contrast to these approaches, SPDS relies on a precomputed call graph.
While Java supports limited higher-order functions through its object-orientation [Might et al.
2010], current call-graph algorithms for Java can most often properly resolve function calls through
pointer analysis. Subsequently, we do not expect higher-order functions to have a significant impact
on the analysis precision in Java. A second major difference to CFA2, PDCFA, and P4F is that SPDS
uses two instead of one pushdown systems to model the heap.

We showcased SPDS based on a typestate analysis. A typestate analysis requires flow-sensitive
information. Prior research on data-flow analyses that are flow-sensitive, context-sensitive, and
also field-sensitive is rare. Andromeda [Tripp et al. 2013] and FlowDroid [Arzt et al. 2014] are two
precise taint analyses of these dimensions, and both use k-limiting. From the results obtained in
the evaluation, we assume that lifting FlowDroid to SPDS, tainted data-flows can be computed
more efficiently.
IFDS-APA [Lerch et al. 2015] encodes a context-sensitive, flow-sensitive, and field-sensitive

analysis. Such configuration is closely related to SPDS. This formulation does not use pushdown
systems, instead the authors’ approach requires that either the language of field stores and loads or
the language of matching call and returns must be over-approximated by a regular language, an
additional (and lossy) computation step not required in SPDS.

In Section 1, we have discussed the related work on access graphs [Geffken et al. 2014; Khedker
et al. 2007; Späth et al. 2016], which is a similar representation to 𝒜F of 𝒫F. Access graphs allow
a finite representation of the potentially infinite number of access paths. However, to be flow-
sensitive, these previous approaches maintained access graphs per statement. Using SPDS, the single
automaton 𝒜F encodes all field accesses at all statements. Similarly, also alias graphs [Kastrinis
et al. 2018], a field abstraction proposed as an efficient data-flow model for must-aliasing access
paths, must store information statement-wise. While alias graphs compute must-alias information,
our solution computes may-alias information.

8 CONCLUSION

We have presented synchronized pushdown systems (SPDS), a new concept to context-sensitive,
flow-sensitive, and field-sensitive data-flow analysis. An SPDS is a combination of two flow-sensitive
pushdown systems, one matching calls and returns, the other matching field stores and loads. The
combination of two resulting 𝒫-automata then computes context-sensitive, flow-sensitive, and
field-sensitive data-flow information.
SPDS pushes its over-approximations into corner cases where a context-insensitive data-flow

path occurs simultaneously with a field-sensitive path or vice versa. While we we showed that
this causes imprecision on synthetic examples, our experiments using a pointer-tracking typestate
analysis confirm that those situations do not arise in practice, allowing SPDS to yield an analysis
that is fully field- and context-sensitive in most practical situations.
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This paper also presents a worst-case complexity analysis of SPDS which unravels that the SPDS
shifts the complexity in comparison to the same analysis implemented with k-limiting in an often
favorable way. Our practical evaluation confirms these results: In particular for the predominant
types of data-flows, flows that span a small number of methods, but require tracking a large number
of field accesses, using SPDS outperforms existing solutions based on access paths or access graphs.
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