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Abstract—As increasingly complex software is developed every day, a growing number of companies use static analysis tools to
reason about program properties ranging from simple coding style rules to more advanced software bugs, to multi-tier security
vulnerabilities. While increasingly complex analyses are created, developer support must also be updated to ensure that the tools are
used to their best potential. Past research in the usability of static analysis tools has primarily focused on usability issues encountered
by software developers, and the causes of those issues in analysis tools. In this article, we adopt a more user-centered approach, and
aim at understanding why software developers use analysis tools, which decisions they make when using those tools, what they look
for when making those decisions, and the motivation behind their strategies. This approach allows us to derive new tool requirements
that closely support software developers (e.g., systems for recommending warnings to fix that take developer knowledge into account),
and also open novel avenues for further static-analysis research such as collaborative user interfaces for analysis warnings.
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1 INTRODUCTION

From simple linters such as Checkstyle [1] to more
complex tools such as CodeSonar [2] and Fortify [3]], static
analysis has improved over time to detect more complex
bugs faster and with better accuracy. While the underlying
analyses grow more efficient, the usability of the tools
improves at a slower rate. Previous studies have reported
on recurrent usability problems such as poor explainability
and slow updates [4], [5], [6], [7]. Such usability issues may
lead to misinterpreted warnings and tool abandonment.

While past studies focus on analysis correctness and
usability issues reported by tool users, we offer a new per-
spective on the usage of static analysis tools in practice, by
focusing on the usage context of the tools, and the developer
motivations and strategies when working with them. To
understand how to best support developers when designing
or setting up static analysis tools in industry, we apply the
principles of user-centered design [8]], [9] to study the usage
context of the tools from the developer’s perspective. This
approach helps us understand the goals that developers
have when using analysis tools, what they expect from
the tools when working with them, and what can be done
to better support them. We then derive requirements and
applicable guidelines for designing and using analysis tools.

We present three categories of findings: (1) findings
that confirm results of prior work (e.g., soundness issues
in analysis tools), (2) findings that contrast prior work
(e.g., developers are not as interested in style warnings
as performance warnings), and (3) findings that highlight
novel research areas for static analysis (e.g., tool support for
collaborative interfaces).

To understand the usage context of analysis tools in
practice, we conducted a survey in industry in collaboration
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with Software AG [10]], an international software vendor
based in Germany, and present in more than 70 countries.
It is active in areas such as database management systems,
big data analytics, business analytics, networking, software
development, data transfer, and cloud solutions. As a large
software vendor, Software AG has a strong interest in
the functionality and security of their software products.
Among other security measures, they use a large array of
static analysis tools, which are the focus of our survey.

Our survey focuses on the usage of 17 analysis tools at
Software AG, with 87 of its software developers. We report
on the developers’ goals, motivations, and strategies when
they use analysis tools, how those three aspects influence
the way they interact with the tools, and which tool features
could thus support them best. In addition, we illustrate
some of the findings of our survey through a study of the
analysis results of Checkmarx [11]], a major analysis tool
used by Software AG, on two large projects of the company.

In this article, we make the following contributions:

+ We present the results of a survey over 87 developers
and 17 analysis tools, and a deeper study of Check-
marx warnings, focusing on how and why developers
integrate static analysis in their work.

e We report on how analysis tools are integrated in
Software AG’s development environment, the different
types of tools that are made available to the developers,
and what the developers would prefer using.

o We describe how developers use analysis tools in their
daily work, what their goals are when opening an anal-
ysis tool, and if those goals are met when they close it.

o We present the strategies used by developers when
they perform different tasks with analysis tools: warning
prioritization, determining whether a warning is a false
positive or a true report, understanding a warning, and
how they handle warnings they do not understand.

¢ In light of developer motivations, strategies, and goals,
we identify recommendations and new research areas for
designing and using analysis tools in industry, namely
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building workflows that take the developer work time
into account, integrating developer heuristics in the tools
to encourage or discourage certain behaviour, and build-
ing collaborative platforms to leverage the knowledge of
developer teams.

2 RELATED WORK

We present related work on the use of static analysis tools,
and past studies reporting on their user-experience issues.

2.1 Usability of Static Analysis Tools in Practice

Static analysis has been used in industry since the 1970s.
At first aimed at compiler optimization, its uses are now
extended to bug and security vulnerability spotters, or cod-
ing automation such as code completion or refactoring [12].
The first large static analysis tools dedicated to bug and
vulnerability detection appeared in the early 2000s, such
as Coverity [13] or Fortify [3]. Since then, the adoption of
static analysis tools in industry has steadily increased to
detect bugs as early as possible in the software development
process, thus cutting fixing costs by multiple factors [14]. In
more recent years, applications of static analysis tools have
expanded, supporting more languages and use cases, and
detecting a growing set of bugs and vulnerabilities. From
lightweight checkers run in the Integrated Development
Environment (IDE) such as FindBugs [15] to more complex
analyses such as Checkmarx [11] which are typically run
during nightly builds, open-source and commercial tools
are used and recommended by security authorities such as
OWASP [16] and CERN [17].

Despite its success, static analysis has been known for
specific user-experience issues since its first applications in
industry. Vorobyov et al. [18] compare model checking and
static program analysis by focusing on the precision of both
approaches, and discuss the causes of their limitations in the
approach’s functionalities (e.g., handling internal libraries).
Bessey et al. [4] report on the experience of software de-
velopers with Coverity since its release in industry in 2002,
showing that bad warning explainability, unclear tool con-
figurations, and a high number of false positives have been
issues with static analysis tools early on. Christakis et al. [19]
survey developers and study live site incidents at Microsoft
to extract pain points (e.g., false positives and bad warning
messages) and potential improvements to the analyses (e.g.,
sources of unsoundness and reporting locations).

Those studies primarily focus on the tools and their us-
ability issues, deriving features for better developer support
with respect to the analysis (e.g., improving precision). In
contrast, our focus is not the tools themselves. Instead, we
approach the problem from the developers’ perspective, and
report on their motivation for using the tools, their strategies
for using the tools, and, as a result, derive a different set of
supporting features (e.g., collaboration features).

2.2 Developer Motivation and Behavior

The two studies closest to our own also report on developer
motivations and how they influence the requirements for
static analysis tools. Layman et al. [20] study the strategies
of 18 student developers using the analysis tool AWARE.
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They extract requirements that differ from other studies
such as the need for integrating the user’s perception of
severity in the severity rating of a warning. Johnson et al. [6]
interview 20 developers on their experience with various
analysis tools, focusing on the usability issues encountered
in those tools and why they occur, from the point of view
of the developer. This approach enabled the authors to
present different requirements such as the need for better
explanations in warning descriptions.

We build on both studies and conduct ours on a
company-wide scale. Instead of reporting on usability is-
sues, we focus on the usage context, including company
policies and developer schedules, and how it affects the way
that developers work with analysis tools. We then derive
requirements for building and using analysis tools.

Vassallo et al. [21] survey 42 developers and interview
11 experts who install and configure static analysis tools in
industry. They focus on the usage context of the tools when
developers prioritize warnings to fix first. They identify
factors that developers take into account when making the
decision, and show that certain coding contexts lead to
different decisions. While we do not go in the detail of how
particular contexts influence the developer’s actions, our
study also reports on developer strategies for prioritizing
warnings and extends to other developers actions—such as
distinguishing true from false positives or asking colleagues
for help— and to different aspects of analysis tool usage
(e.g., developer constraints and motivations).

Ayewabh et al. [7] report on developer usage of FindBugs,
in particular the importance of warning severity in selecting
which warnings to fix first, and how developers handle false
positives. In a follow-up study, Ayewah et al. [22] observe
student developers while using FindBugs to extract the fac-
tors that impact warning understandability. The findings of
both studies are consistent with our survey, but we further
investigate developer motivations and reasons for which
they make those choices. Additionally, our study covers
more aspects of how developers work with analysis tools
such as how they decide which warnings are false positives,
and what they do with warnings they do not understand.

Lewis et al. [5] compare different analyses and observe
which one enables Google developers to be more efficient.
Factors such as a bias towards new warnings or actionable
messages were shown to be factors of interest to the devel-
opers. Similar to Ayewah et al. [22], the authors conduct
their study in a controlled environment, not accounting for
realistic usage contexts such as time constraints and real-life
motivations, which we highlight in our study.

Zampetti et al. [23] study the usage of static analysis
tools in open-source projects. Overlapping with our study,
they report on the different types of issues that are reported
and how they are addressed. Our study covers the addi-
tional human aspect of tool usage: how and why developers
interact with such tools.

Zheng et al. [24] study the usage of static analysis tools
at Nortel Networks. They focus on the economical aspect
of static analysis tool usage, and —among other results—
report on the types of warnings their tools report, which is
the only intersection with our study.
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3 STUuDY

To understand how developers interact with static analysis
tools, we conducted a two-part study. First, we sent a survey
across the main development teams at Software AG, asking
developers about their experience with static analysis tools.
In a second part, we were given access to the reports of
analysis runs with Checkmarx [11]], one of the major analysis
tools used by Software AG. Checkmarx is a static analysis
tool that supports 20 programming languages, and that can
be used as a standalone tool with a web interface or in
different Integrated Development Environments as a plugin.
It is part of the continuous integration system at Software
AG, and is used by a large variety of projects to detect soft-
ware bugs and security vulnerabilities. Its interfaces provide
management overviews of the projects” health, and detailed
information about individual warnings, which developers
use to communicate about the warnings and to fix them.
The analysis reports also include information on how devel-
opers handled the warnings over several months, for two
of Software AG’s major projects, which we anonymize as
Application 1 and Application 2 at the company’s request.
We use this data to complement the survey answers.

Our study addresses the following research questions:
RQ1: How are analysis tools integrated in the development
environment?

In which usage contexts do developers use analysis
tools, and with which goals?

What are the strategies that developers apply when
working with analysis tools?

What are the features that analysis tools should pro-
vide to developers to support them?

In this section, we present the composition of the survey,
the analysis reports, and our methodologies for designing
the survey and extracting the data. The complete list of ques-
tions and anonymized responses is available online [25].

RQ2:
RQ3:

RQ4:

3.1 Survey Design

To answer RQ1-RQ4, we designed a survey composed of 40
questions (referred to as Q1-Q40) grouped into the follow-
ing six categories. Unless specified otherwise, all questions
are multiple choice with an “Others” free-text field.

1) Participant information: We asked participants how long
they have worked as a developer (Q1) and which
programming languages they work with (Q2).

2) General use of static analysis tools: We asked develop-
ers general questions on how analysis tools are used
at Software AG. This category includes questions on
which analysis tools they use at the moment (Q4), when
those tools are run in the project (Q5), who configures
them (Q6), what kind of issues are detected (Q7), what
kind of issues they would like the tools to report (Q8),
if they fix the analysis warnings themselves (Q9), and
who reviews the fixes (Q29).

3) Reporting warnings: This category reports on the for-
mats in which the tools report warnings (Q10), the
formats the developers would prefer (Q11-Q12), how
long developers take to fix a warning (Q13), and how
long they typically wait before their fix is verified (Q14).
In free-text, we also asked developers to comment on
the reporting systems of their analysis tools (Q15).
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Q4-Q6
Q7-08
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Q10-0Q12
Q13-Q14
Q15
Q16-Q17
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Figure 1: Number of Responses per Groups of Questions.

4) Working context: We asked developers which analysis
tool they use the most (Q16), and focus on that tool
for the rest of the category. We asked them how often
(Q18), when (Q19), and where (Q20) they use it, how
long they use it for (Q21-Q22), and why they use (and
stop using) it (Q23-Q24). We also queried developers
about which parts of the tool’s interface they use the
most, when they open (Q26), work with (Q28), and
close (Q27) the tool, and if they are using the default
layout of the interface (Q25).

5) Features of analysis tools: Q30 and Q31 (the latter, as
a free-text question) asked developers to evaluate how
important different tool features are to them.

6) Fixing analysis warnings: This category reports on the
ratio of warnings developers investigate (Q32), un-
derstand (Q35), and for which they seek help from
colleagues (Q38). It details the strategies used by devel-
opers to choose which warnings to investigate (Q33-
Q34), the reasons why certain warnings are difficult
to understand (Q36-Q37), and why developers ask for
help (Q39). Finally, (Q40) asks about final comments on
analysis tools as a free-text question.

We ran a pilot survey with five developers, after which
we compacted the survey so that it could be completed in
approximately 20 minutes. We namely removed questions
similar to Q30 and Q31 that asked developers to which
extent their current tools support the features.

3.2 Methodology and Data Extraction

We reached out to 120 developers at Software AG (two
thirds of the development force) and received 87 responses,
yielding an exceptionally high response rate of 72.5%, cover-
ing a fair share of the company’s application domains. From
those participants, 53 developers completed the survey in
full, yielding a drop rate of 39.1%. Figure [l| details the
response rates. In this article, when we report on percent-
ages of participants, we take the number of responses to
the corresponding question as the baseline, instead of the
overall number of 87 participants. The percentages may
also add up to more than 100%, because some questions
allow the selection of multiple responses. We only report on
responses reported by more than one participant.

Our survey gathers information from a diverse group:
46.8% of the participants have 2-5 years of experience as
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software developers, 25.3% have 5-10 years, 13.9% have 1-2
years, 10.1% have more than 10 years, and 3.8% have less
than a year of experience (Q1). While the large majority
work with Java (91.1%), Javascript (38%), C/C++ (10%),
PHP (7.6%), Python (7.6%), and 12 other languages, each
used by fewer than 2.5%, are also used (Q2). Due to Soft-
ware AG’s policies on the usage of static analysis tools, all
participants have experience with them.

All survey questions but three are multiple-choice ques-
tions, for which we straightforwardly report the results.
We attribute the high response rate to this multiple-choice
format which makes it easier and quicker to answer, and
to the company’s internal publicity of the survey. The sur-
vey was designed after a discussion with an experienced
Software AG developer, so the suggestions given in the
multiple-choice questions covered most of the developers’
answers. In most cases, we could re-categorize answers
from the “Others” fields in existing categories (e.g., “15” was
recategorized in “> 10 years” for Q1). We discarded some
of them when they clearly did not answer the question (e.g.,
“Not applicable” for Q24). The remaining answers were left in
the “Others” category, but were not numerically significant
enough to report on. Similarly, we do not report on the free-
text questions, which had 3, 2, and 0 answers, respectively.

3.3 Analysis Reports

To complement the survey with respect to developer strate-
gies for triaging and prioritizing analysis warnings (RQ3),
we analyzed the reports of Checkmarx, one of the main
static analysis tools used at Software AG. Checkmarx is
deployed on a large number of projects at Software AG,
as part of their global effort to improve the quality of their
code, and is used by 51.2% of the survey participants.

Checkmarx is a dedicated tool, meaning that it is indepen-
dent of the tools used by developers (e.g., code editors or
project management systems). Checkmarx has an elaborate
web-based Graphical User Interface (GUI) that provides
developers with detailed information such as warning cat-
egories (e.g., SQL injection), an estimate of their severity,
general warning statistics, etc. Checkmarx also allows de-
velopers to comment on the warnings, for example, marking
them as false positives or fixed.

We studied the analysis reports of Application 1 which
contains 8 sub-projects, varying from 56,000 to 1,550,000
LOC, and Application 2 which has 4 sub-projects, ranging
from 270,000 to 6,650,000 LOC. We analyzed scans from
spring 2017 to December 2018, except for 6 sub-projects of
Application 1, 3 of which have been using Checkmarx since
winter 2018, and 3 others, since winter 2017. We use the
outcomes of our analysis to support RQ3 in Section 6]

4 INDUSTRIAL DEPLOYMENT OF ANALYSIS TOOLS

In the past few years, Software AG has strived to ensure
the quality and security of its software through the use
of analysis tools. Software AG continuously encourages its
development teams to use static analysis (and other tools)
to ensure code quality and security. Individual projects and
developers can use their own analysis tools independently,
resulting in a variety of analysis tools deployed across
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Figure 2: Tool Types Used by Participants (Q4).

the company, going from simple linters that return results
almost immediately such as SonarLint to more complex
tools such as Fortify, which are slower and typically run as
part of nightly builds. In addition, in the past years, global
efforts across the company have recently resulted in the
deployment of common analysis tools and platforms over
most major projects. One such tool is Checkmarx, which is
deployed across the major projects of the company through
a central service new projects can register with. As one
of the more complex, slower tools, Checkmarx runs daily,
and for each project, yields a list of bugs all of the project
developers are responsible for. While rules may vary from
project to project, developers are generally instructed to
fix recent bugs, and bugs with a higher severity first. The
company emphasizes bug fixing right before and after major
code releases. Outside of those periods, developers also fix
warnings in parallel with their development work.

To answer RQ1, we now discuss which tools are used at
Software AG, how they are integrated in the development
process, and which types of issues they find.

4.1 Analysis Tools

Software AG developers report using a total of 17 different
analysis tools that we group by interface types in Figure 2]
(Q4). IDE notifications refer to analyses run by the devel-
opers’ Integrated Development Environment (IDE) (e.g.,
uninitialized variables). IDE tools designate analysis tools
presenting analysis warnings in the IDE (e.g., FindBugs).
Dedicated tools provide interfaces that are separate from the
developer’s coding environment (e.g., Fortify, Checkmarx,
or CodeSonar). CLI tools provide a Command-Line Interface
(CLI). We can see that Software AG uses a wide variety of
analysis tools. Among the survey participants, 67.6% use
dedicated tools, which conforms with Software AG’s policy
of using such tools in their projects. Participants also receive
analysis information from IDE notifications (55.9%) and IDE
tools (44.1%). Overall, 36.8% of the participants use only one
analysis tool, and 48.5% use only one type of analysis tool.

With Q5, we observe that the use of analysis tools is
spread over the software development lifecycle: 55.9% of the
participants run their analysis tools at coding time, 52.9%
during nightly builds, 29.4% at commit time, and 17.6% at
major project milestones. We attribute this behaviour to the
different types of analysis tools—IDE notifications typically
run lightweight analyses and can run at coding time, while
longer running tools are not usually able to do so.

We see that Software AG puts efforts in raising aware-
ness about the use of analysis tools and exposes its devel-
opers to large system of tools comparable with other large
companies studied in past research, thus making Software
AG a good case study for evaluating developer behavior
and motivation towards static analysis tools.
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Figure 3: Ideal Reporting Locations that Developers Want

Compared to Those of Current Analysis Tools (Q10-Q11).

4.2

Once the analysis tools have run, they display warnings in
various places, as shown in grey in Figure [3| (Q10). Reports
in the code editor, build output, and dedicated tools are
expected from the tool types that are most used at Software
AG. When asked which reporting media they would prefer
to use (Q11, black bars in Figure 3} participants confirmed
wanting to use their current reporting platforms). However,
alternative means were requested to a much higher extent:
separate PDF files were requested 3.75x more than cur-
rently used, email reports were requested 1.89x more, and
the code review platform was requested 1.36x more. We
attribute this higher demand to the ability of those media to
aggregate results from multiple analysis tools in one place,
which makes it easier to have an overview of the analysis
results. Although we cannot confirm this claim with our
current dataset, it is partially supported by Q12 where 5.5x
more developers indicated that they would prefer having
the results of multiple analysis tools into one reporting place
rather than in different ones (74.5% against 15.7%).

The survey responses show that 82.4% of the participants
typically fix analysis warnings themselves (Q9). Once the
warnings are fixed, they are reviewed by colleagues (79.5%),
managers (15.9%), or dedicated teams (9.1%). Out of all
fixes, 9.1% go unverified (Q29).

According to 47.1% of the participants, analysis tools
used at Software AG are configured by a dedicated team.
However, 36.8% wrote that they configured some of their
analysis tools themselves, and 16.2% that some of their
tools run on default settings (Q6). We see that a high
number of developers set up their own tools themselves,
which we attribute to the use of tools not proposed by
the global company effort. This behavior, along with the
responses to Q17 where 78.3% of the developers said that
they use analysis tools because it “helps me code better”
against only 30.4% because of “company policy”, suggests
that Software AG generally encourages the use of analysis
tools and spreads awareness among its developers about the
importance of fixing bugs and security vulnerabilities.

Integration in the Development Process

4.3 Analysis Warnings

In their responses to Q7, participants indicated the warning
types that are reported by analysis tools in their projects
(grey bars in Figured). The warnings that are most reported
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Table 1: Conditional Probability of a Warning Type (S = se-
curity, P = performance, M = memory, C = concurrency, CS =
coding style, FB = functional bugs) Given a Tool Type (Q7).

S P M C CS FB

Dedicated tools 031 0.06 008 0.04 034 016
IDE notifications 026 0.06 0.04 0.06 04 019
IDE tools 027 005 006 0.09 031 021
Linters 0.27  0.09 0 0 036 027
CLI tools 0.50 0 0 0 025 025
i I
Security | |
1
Performance ——
I
Memory ===
i |
Coding style |
Concurrency I:I_
B Ideal
Functional bugs |:|_ I Current
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Figure 4: Warning Types that Developers Want Compared
to Those Reported by Current Analysis Tools (Q7-Q8).

are coding style-related (according to 82.1% of the partic-
ipants), followed by security vulnerabilities (59.7%), and
functional bugs (38.8%). Table [I| presents the conditional
probabilities of warnings being of a certain type given
the tool type. We see that for each tool type, the warning
types most likely to be reported are security vulnerabilities,
coding style issues, and functional bugs, matching the distri-
bution of warnings that code developers listed as most often
reported. Dedicated tools and CLI tools are most likely to
report security vulnerabilities, and linters, IDE notifications
and IDE tools are more likely to report coding style issues.
When asking developers which types of warnings they
would like analysis tools to report (Q8, black bars in
Figure [d), we observe that the warning types are more
distributed. While security vulnerabilities and functional
bugs are still high (89.6% and 59.7%, respectively), the
number of participants asking for other types of warnings
(performance, memory, and concurrency) is higher than the
number of participants getting access to such warnings by
factors of 4.4x to 5.3x. Finally, participants wish to see less
of the most frequently reported warnings: coding style.
Summary (RQ1)
o The most frequently used analysis tools are dedicated
tools, as well as IDE tools and notifications.
« Tools report warnings in various locations, but develop-
ers prefer to have them aggregated in a central interface.
¢ Unlike prior studies, Software AG developers rank cod-
ing style warnings low on their list, and have a higher
interest in performance, memory, and concurrency bugs.

5 CONTEXTS FOR USING ANALYSIS TOOLS

Here, we address RQ2 by detailing when and how Soft-
ware AG developers use analysis tools, and expand on
the reasons that make them use those tools. We focus on
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Table 2: Conditional Probability of the Length of a Working
Session Given the Tool Type (Q22).

<10min 10-30min > 30 min  hours
Dedicated tools 0.16 0.52 0.13 0.1
IDE notifications 0.31 0.35 0.12 0.12
IDE tools 0.40 0.44 0.04 0.04
Linters 0.75 0 0 0.25
CLI tools 0 1 0 0

Table 3: Conditional Probability of Fixing a Warning in a
Certain Time Period Given the Tool Type (Q13).

mins <1hr <1lday <1wk <1month
Dedicated tools 0.15 0.15 0.38 0.21 0.06
IDE notifications 0.19 0.26 0.35 0.10 0.30
IDE tools 0.23 0.19 0.42 0.12 0
Linters 0.50 0.25 0 0 0
CLI tools 1 0 0 0 0

the tool types that developers use the most: IDE tools and
notifications, and dedicated tools.

5.1 Developer Workflow

Although the usage of analysis tools is distributed evenly
during the day (morning 11.4%, afternoon 13.6%, and
evening 11.4%), the largest group of developers (22.7%) use
analysis tools in their spare time, i.e., when they have a few
minutes between meetings, or spare hours during the work
day (Q19). Analysis tools are used frequently in the work
week: 75.6% of the participants say they use them multiple
times in a week, 24.5% of whom use them more than once
a day (Q18). This usage pattern indicates that working with
analysis tools is not a large task that requires a developer to
block a part of their schedule, but instead a set of short tasks
that can be interrupted and resumed later. This observation
is further supported by responses to Q13 and Q22 where
we see that the median time for one working session with
an analysis tool lasts for 10-30 minutes while the median
time for fixing a single warning is between an hour and a
day. We can thus infer that in many cases, developers spread
their treatment of a warning over multiple working sessions.

The length of a working session with IDE notifications,
IDE tools, and dedicated tools mainly vary between a few
minutes to 30 minutes (Table[2). While the session length for
IDE notifications and tools is evenly distributed between <
10 min and 10-30 min, dedicated tools clearly lean towards
the longer end of the spectrum. The typical fix times for one
warning are shown in Table 3| We find the same trend over
the time span of minutes to under a week: with IDE noti-
fications and tools, a warning is fixed in around a shorter
time (between an hour and a day) than with dedicated tools
(around a day). This trend is explained by the fact that
analyses running in the IDE must be able to yield results in
a matter of seconds, which restricts them to fast and simple-
to-compute checks. Their warnings are thus relatively easier
to fix. We see that for the individual tool types, working
sessions are typically shorter than the time to fix a warning,
the only exception being CLI tools.

6
Table 4: Goals When Opening Analysis Tools (Q23).

Goal % of Devs
O1  Fix all warnings 36.4%
02 Fix warnings in a given time 31.8%
03  Consult warning list 31.8%
04  Fix a set number of warnings 9.1%
O5  Fix warnings up to a certain standard 4.6%

Table 5: Reasons for Closing Analysis Tools (Q24).

Reason % of Devs
C1  Finished fixing everything 45.5%
C2  Professional obligation 25%
C3  Wait for the analysis tool to update 18.2%
C4  Office distraction 13.6%
C5  Never close the tool 13.6%
Cé6 Cannot fix an issue 9.1%

5.2 Developer Motivation

Having determined the usage context of analysis tools, we
now explore the reasons why developers start and stop
using analysis tools in their daily work.

When asked for the reasons why they use analysis tools
in general (Q17), 30.4% of the participants reveal that it is
because of company policies, and 21.7%, that it is because
they help them code faster. In addition, 78.3% of the devel-
opers report that the tools help them code better, showing
that developers value the use of analysis tools outside of
company obligations.

Table [ shows that, independent from the tool type, most
of the reasons for which developers open an analysis tool
revolve around fixing warnings, with the variation of how
many warnings they aim to fix (Q23). Conditional proba-
bilities show that a relationship exists between tool types
and fixing goals. When using dedicated tools, participants
mostly aim at fixing as many warnings as possible in a given
time (Pr = 0.31), which is a sensible strategy when dealing
with complex warnings. With all other tools, participants
mainly aim to fix all warnings when they open the tool.
Consulting the list of warnings is a frequent reason why de-
velopers open the tools for all tool types (0.24 < Pr < 0.28).
Table 5| details why developers close an analysis tool (Q24),
independent from the tool type. The main reason is that they
finished fixing all warnings, which we attribute to the use
of lighter analysis tools that yield easier-to-fix warnings. The
second cause is time limit. The third one is that they wait for
the tool to re-run the analysis on the fixed code (complex
analyses can take minutes to hours to process an update).
A minor reason for which developers close the tool is that
they cannot fix a warning, an issue that is likely encountered
when dealing with complex warnings that are not properly
explained by the tool.

Table E] shows that, regardless of the reason why the
tool was opened, a popular reason for closing it is that
all warnings were fixed (C1). However, when developers
open the tool with a certain limit in mind (time or number
of warnings), fixing all warnings is not the main closing
reason. Developers are also likely to close the tool due to
professional obligations (e.g., a meeting) or waiting for a
tool update. We also see that when developers open the tool
with the intention to fix all warnings, they only manage
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Table 6: Conditional Probability of Reasons for Closing an
Analysis Tool given the Reason for Opening it. The Legends
for Ox and Cx are Found in Table [4 and Table

C1 c2 C3 C4 Cé
o1 0.45 0.05 0.15 0.05 0.15
02 0.22 0.33 0.17 0.17 0
03 0.35 0.25 0.15 0.10 0.05
04 0.20 0.20 0.20 0.20 0

to reach their goal 45% of the time. Otherwise, they are
either stuck on a warning or waiting for a tool update. This
suggests that when developers do not have time constraints,
they have a fair chance to eventually run into warnings that
they cannot fix in one working session.

Summary (RQ2)

¢ Developers mostly use analysis tools in their spare time,
and fix warnings in short working sessions.

e Time limitations are the main reason that developers
close analysis tools, which imposes different interaction
experiences on them when they use the tools (e.g., when
choosing warnings to fix).

6 STRATEGIES FOR FIXING ANALYSIS WARNINGS

We now answer RQ3 by exploring developer behavior when
fixing warnings, in particular how they prioritize which
ones to investigate first, what they do with warnings that
they do not understand, and how they collaborate with their
colleagues to fix them.

6.1 Prioritizing Warnings

Before they start to fix warnings, developers must first
select which warnings to fix. To help them choose, analysis
tools typically provide them with additional information
such as warning type (e.g., SQL injection), code location,
or severity. Table [7] shows the four main strategies adopted
by the survey participants when choosing which warnings
to investigate (Q34). One of the most popular is to prioritize
the warnings by impact, which aligns with Software AG’s
policy of addressing all of the most severe warnings before
a major release. This confirms the findings of Vassallo et
al. [21], who also mark severity as the most important
factor in choosing warnings to fix first. A developer will
also preferentially work on warnings that impact their own
code or that they know how to fix, because they have the
necessary knowledge to do so. The last strategy is to go
from the top down in the warning list, which is a sensible
methodology for simple lists of warnings that are all fixable
within one working session. Such strategy is also useful for
longer, more complex lists that the tool already sorts by
importance, which is often the case in dedicated tools.

To gain a deeper understanding of which warnings are
fixed first, we studied the analysis reports of Checkmarx on
two projects: Application 1 and Application 2. The top half
of Figure |5/ shows the number of warnings found for six
of their sub-projects, grouped by confidence (false positive
or true positive, as labeled by the developers when they
handled the warnings), over the time span of a few months
for Application 1 to nearly two years for Application 2. The
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Table 7: Strategies to Prioritize Which Warnings to Address
First (Q34).

Strategy % of Devs
Prioritize warnings affecting the developer’s code 46.3%
Prioritize warnings with the most impact 43.9%
Prioritize warnings the developer can fix 31.7%
Follow the order of the warning list 31.7%

bottom half shows the same data, grouped by severity, as
provided by Checkmarx.

Except for Application 1 G, only a fraction of the warn-
ings are labeled by developers as true or false positives. We
see that the variations of the number of labeled warnings
follows the variations of the general number of warnings,
suggesting that developers actively handle new warnings
but usually only look at a fraction of the total number of
warnings, or do not often label warnings. We also observe
that developers tend to keep the number of warnings with
a high severity at a minimum: the plots consistently remain
close to 0, confirming our survey results (Q34: developers
tend to fix warnings with the most impact). This observation
is supported by Table [§} the probability of a high severity
warning to be in the to verify list is very low compared to
other types of warnings, and the high severity warnings
that remain are most often false positives. Confirmed true
positives are handled similarly: they are kept to a minimum
and eventually removed, (e.g., Application 2 C).

Most projects also have a small number of low severity
warnings, which we attribute to the relative ease of fixing
such warnings, matching the developer strategy of fixing
what they know they can fix. For example, unchecked return
value, and null pointer dereference, likely to be classified with
a low severity with a probability of 1, are simple to fix.

In the longer-running Application 2 projects, we also
observe that the number of warnings regularly increases and
plummets, which (knowing Software AG’s release schedule)
we suppose with fair confidence corresponds to compliance
tests before major product releases or milestones. Outside of
those times, the number of warnings decreases slowly due
to continuous work done by developers on their spare time,
as we have previously discussed.

6.2 Detecting False Positives

To help developers decide whether a warning is a false
positive or a real issue, analysis tools often provide them
with additional metrics. For example, the main screen of
Checkmarx allows developers to filter analysis warnings
by warning type (e.g., cross-site scripting), code location,
severity, and other editable information (e.g., confidence).

Table [J shows five main strategies that participants use
to evaluate if a warning is a false positive (Q33). The main
strategy is looking at the warning type. This strategy can be
a quick way of triaging through warnings, because certain
warning types are more often labeled as false positives than
others. For example, memory leak or use of uninitialized vari-
able are very likely to be marked as false positives (Pr = 0.8
and Pr = 0.71, respectively). However, this strategy can be
misleading: without investigating each warning in detail,
true positives may be overlooked.
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Figure 5: Number of Warnings for Three Sub-Projects of Application 2, and Three Sub-Projects of Application 1. At the
request of Software AG, we do not disclose the axis labels. All axes are in linear scale, the y-axes all start at 0. For the
same sub-project, the maximum value on the y-axes are the same on both graphs. The total number of warnings for a
Sub-Project can be obtained by summing the plots of its bottom graph, since Checkmarx automatically labels all warnings

with a severity.

The second-most popular strategy is related to misin-
terpretations of some code constructs by the analysis (for
example, the behavior of specific libraries or objects). Such
constructs seem to be known by developers, and are used to
differentiate true from false positives. Another 43.9% of the
participants said that they recognize false positives because
the warning witness is incorrect, meaning that the analy-
sis’ interpretation of the code’s runtime behavior is faulty.
This situation requires from the developer to investigate
the warning in detail, which is a very accurate, but time-
consuming strategy. On average, participants investigate
65.1% of the warnings in detail (min = 20%, max = 100%,
o = 26.1) (Q32). The last strategy is to mark as false
positives warnings that go through areas of the code that
are never executed. While this strategy helps remove false
positives, it is insecure to keep vulnerable non-executed
code in the codebase, as it could be exploited in the future.

Table 8: Conditional Probability that a Warning is Marked
with a Certain Confidence Given its Severity.

False Positive True Positive  To Verify
High 0.92 0.03 0.04
Medium 0.15 0.03 0.83
Low 0.05 0.01 0.93
Info 0 0 1

Table 9: Strategies to Detect False Positives (Q33).

Strategy % of Devs
Categories of issues are known false positives 43.9%
Code constructs are not handled by the analysis 39.0%
Warning witness is not executable 31.7%
Code locations are never executed 22.0%
Conditions along the warning are never true 12.2%
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Table 10: Why Warnings are Difficult to Understand (Q36). Table 12: Why Developers Ask for Help (Q39).
Reason % of Devs Reason % of Devs
Unfamiliar with the issue 48.8% Others have experience with the code base 46.3%
Explanation given by the analysis tool is unclear 48.8% Others have experience with the type of issue 39%
Span over too much of the code base 31.7% Others have experience with the analysis tool 31.7%
The code base is unclear 4.9% The developer does not ask for help 14.6%

Table 11: Ranking Developer Actions for Warnings That
They Do Not Understand (Q37).

Action % of Devs Behaviour type
Leave for later 56.1% Neutral
Ask for help 51.2% Good
Ignore 14.6% Bad
Research and fix 7.3% Good
Suppress 7.3% Bad
Escalate 2.4% Good

6.3 Understanding Warnings

To understand if a warning is a true positive, if they should
prioritize it, and how they could fix it, developers have to
gain an understanding of the warning. We have previously
discussed that developers often use heuristics over easily
accessible data to make a decision, because they cannot
spend time investigating all warnings. Therefore, the ability
of the analysis tool to explain the warning and showcase
relevant data is key to supporting its users.

On average, participants understand 36.1% of the warn-
ings they investigate (min = 0%, max = 80%, ¢ = 32.6)
(Q35). To explain this low number, we asked participants
for the reasons why warnings can be difficult to understand,
which we detail in Table (Q36). Three major reasons
stand out. First on the list is that the warning is new to
the developer, so they need to learn a lot: what the warning
means, how it applies to their code, and how to safely fix
it in the context of their code. Another reason is that the
tool’s explanation is unclear. While some tools simply give
a generic description of the warning type, others, such as
Checkmarx, provide more detailed information, yet it is still
difficult to completely explain to developers how the analy-
sis reasons about the warning, especially when the warning
is complex and spans over a wide part of the codebase,
which leads us to the third reason: the size of the warning.
While some analysis warnings can affect small parts of the
code (e.g., use of potentially dangerous function), others can
involve larger parts (e.g., an SQL injection going from a
frontend form to the database).

Table |11 details the treatment of warnings that devel-
opers do not understand (Q37). Overall, we see three main
types of behavior appear: neutral, positive, and negative. We
define positive behaviour as actions that bring the developer
closer to fixing the warning, negative actions as ones that
make the warning harder to be fixed in the future, and neu-
tral as actions that have no incidence on the future treatment
of the warning. A majority of the developers (56.1%) adopt
the neutral behavior of leaving the warnings for later. More
negative solutions are to ignore or suppress the problematic
warning. Respectively 14.6% and 7.3% of the developers
admit to using them, which should be discouraged. Other
participants opt for positive actions and spend more time
asking for help, escalating, or researching the warning. On

average, participants ask for their colleagues’ help for 27.8%
of the warnings (min = 0%, max = 70%, o = 42.2) (Q38).
When developers ask for help (Q39), they are interested
in the three particular aspects that we discussed in Q36:
the issue, the codebase, and the analysis tool (in particular,
what the tool means when explaining the warning), as seen
in Table |12 The first three aspects confirm our observations
from Q36. In particular, with the second one, we see that
of the warnings developers ask about, 46.3% are due to
codebase issues, while only 4.9% of the participants find
warnings confusing due to lack of understanding of the
relevant codebase. We infer that developers rarely ask about
confusing warnings, and that a large fraction of the ones
they ask about are due to codebase clarity issues. This
finding confirms the need for better warning explanations,
especially with respect to information about the issue and
the analysis tool, which is less at hand to the developers than
codebase information they can ask colleagues about. Lastly,
14.6% of the participants do not ask for help. We suppose
that this behavior could be caused by time constraints,
discouragement of working on a warning for too long,
or the social consequences of admitting that they do not
understand the warning.
Summary (RQ3)

¢ Developers tend to choose warnings that they know they
can fix, typically through their knowledge of the code
base, their experience of the tool, and warning types.
Warning recommender systems should thus take into
account tool usage context and developer experience.

e When handling a warning, developers use heuristics
derived from their experience with the tools. Effective
heuristics such as unhandled code constructs should
be integrated into the analysis. Weak heuristics such
as warning categories can result in negative treatments
such as silencing critical warnings.

e The UI of an analysis tool should encourage good be-
haviour such as collaboration between developers and
building a knowledge database.

7 TooL FEATURES

In light of the developers’ motivations identified in the
previous sections, we discuss which features are of most
interest in the user interface of an analysis tool, and how to
present them to the developer, answering RQ4.

From CLI interfaces to standalone applications to IDE
tools, the static analysis tools used at Software AG offer
a wide choice in interfaces. To understand the developers’
preferences with respect to the Ul of analysis tools, we asked
them which kinds of layouts they often use (Q25). Of all
developers, 70.5% use the default layout of the tool, 18.2%
use their own custom layout, 4.6% use the company layout,
4.6% change the tool layout according to their needs of the
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Figure 6: Importance of Analysis Tool Features (Q30).

moment, and 2.3% do not use a particular Graphical User
Interface (GUI) and stick to CLI tools only. We see that even
though Software AG provides developers with a company-
specific interface, they prefer the tools” default layouts.

In Q26-Q28, we asked participants which Ul features
they often look at when opening, using, and closing an
analysis tool. Developer attention is most attracted to the
dashboard (a high-level summary of the project’s health)
when opening the tool (47.7%) and to the warning list
when closing it (59.1%). The warning list is central at all
times, in particular, when using the tool (68.2%), showing
the importance of the information conveyed in this list: the
issues, where they are located, and how much still needs to
be achieved to meet the company’s standards.

For Q30, we identified a set of 19 Ul features from
commercial (e.g., Checkmarx [11], CodeSonar [2], etc.), aca-
demic (e.g., FlowDroid [26], Cheetah [27], etc.), and open-
source (e.g., FindBugs [15], Intelli]’s Code Inspection [28],
etc.) analysis tools, and from past work on their usability
[6l, 1191, [22]], [29], and asked participants to rank their
importance between six categories: should not exist, neutral,
low importance, important, very important, and indispensable
(Q30). We refer to those features as F1-F19, all listed in Fig-
ure @ F1-F2 focus on the responsiveness of the tool, F3-F6
address different aspects of explainability, F7-F9 deal with
fixing warnings, F10-F12 aim at visualizing the project’s
health, F13-F15 help keep track of individual warnings,
F16-F18 concern analysis configuration and feedback, and
F19 focuses on collaboration.

Figure [] shows that the most popular features are F3
(explain a bug), F4 (bug severity), F7 (explain how the bug

10

can be fixed), and F9 (quick fixes). The first three are marked
as very important or higher by respectively 28, 26, and 24 de-
velopers. F9 has 10 developers marking it as indispensable.
The popularity of F3 and F4 echoes our findings from
Section [6} since developers are more interested in severity
and understanding the warning, those two features are most
important to them. F7, which explains how the warning can
be fixed on a high level, is highly appreciated. However,
F8—which does the same but gives more specific recom-
mendations with regards to the codebase—receives less
support. Although we cannot be certain, it is possible that
manually verifying a fix generated by the analysis would
add to what developers currently have to understand, and
the risk of introducing more potential bugs in the codebase
is too high. Those reasons would also explain the low ratings
of F9, which has the highest score for should not exist with
4 developers compared to an average of approximately 1. F9
is thus among both the most popular features (supposedly
for its gain of time) and the least popular ones.

Features such as collaboration (F19), customization of the
analysis rules (F18), and visualization features (F10-F11)—
which we have identified in Section [p|as ones that can poten-
tially enhance the user-experience of the developers—have
received the lowest ratings by a margin of four developers
or fewer when compared to the average, despite F10 and
F11 being often used by the developers (Q26-Q28). With
our current data, it is difficult to say whether those lower
ratings are caused by the developers disliking such features
in their current analysis tools, them disliking the general
idea behind those features, or, if having not experienced
those features yet, they are wary of them. On the other
hand, all features in the survey were deemed important or
more by at least 75% of the participants, showing that when
designing an analysis tool, even the least popular features
would be worth including.

Summary (RQ4)
¢ Developers most often look at the dashboard when they
first open an analysis tool. When using and closing the
tool, they most often look at the warning list.
o F3, F4, F7, F9 are the most popular features among
developers.

8 DISCUSSION

In this section, we discuss the outcomes of our study and
identify recommendations for building and using analysis
tools for software companies such as Software AG.

With RQ1, we have seen that Software AG developers
are involved with a variety of analysis tools at all stages
of the software development process, the most frequently
used being dedicated tools, IDE tools, and IDE notifications.
Warnings are reported in various places across the working
tools, which is consistent with the case study done at Mi-
crosoft [19], but developers indicate that they would prefer
a common interface for all analysis warnings. Centralizing
warnings in the same user interface would reduce developer
effort in switching between different interfaces.

Different types of tools are more likely to find different
types of warnings. The most reported warnings are about
security vulnerabilities, coding style, and functional bugs.
In addition, developers would like to obtain information
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about performance, memory, and concurrency bugs. A ma-
jor difference from the Microsoft study is the requirements
for coding style (separated as "Style" and "Best practices"
in [19]). While second most asked in their list, it is signifi-
cantly less required by Software AG developers, which we
attribute to two factors: their tools report too many such
warnings, and with time, developers need more help with
complex properties of the code than shallower ones.

RQ2 reveals that Software AG developers use analysis
tools at short points in time, mostly in their spare time.
For them, fixing warnings is a continuous task spread over
short working sessions, whose length depends on the tool
type. Developers spend less time fixing warnings from IDE
notifications and tools, and they have shorter working ses-
sions with those tools. More complex warnings produced by
dedicated tools have longer fix times, and cause developers
to work with the tools for a longer period of time.

In turn, this makes time limitations the main reason for
stopping to use an analysis tool. Time limitations generate
different working goals: while developers most often open
a tool with the intention to fix warnings, they choose to
fix different sets of warnings depending on their available
time. This constraint introduces different interaction experi-
ences with the tools, namely how to support developers in
choosing which warnings to fix in the given time, which we
explore in the following section. As a result, when designing
an analysis tool—and modeling the workflow of a user
within the tool, we recommend taking into account how
long the user intends to use the tool for in a single session.

More minor causes for developers ending a working
session are explainability issues for complex warnings, and
the long time taken to update analysis results, which have
been reported in past studies [4], [6], [19].

With RQ3, we study developer behaviour when using
the tools, and find that when choosing which warnings
to fix first, they aim for those they know they can fix, or
for the ones with the most impact. The order suggested
by the tools is secondary to that, which we attribute to
the time constraints that have previously discussed. As a
result, developers base their judgement on their knowledge
of the codebase, their experience of the warning types, and
warning severity. While current recommender systems—
which highlight to the developer warnings they should fix
in priority—mainly center around severity, they should also
take into account other contextual factors such as the length
of a working session, the developer’s experience, or—as
suggested by Vassallo et al. [21]— the tool in which the
analysis is integrated.

To distinguish false positives from true positives, de-
velopers often use heuristics derived from their common
experience, which can be sound or flawed. Allowing devel-
opment teams to integrate sound heuristics in the analysis
or its configuration would help bridge the gap between how
the analysis understands the codebase and how the devel-
oper does. Flawed heuristics stem from warnings that are
ill-explained by the analysis tool, as confirmed by previous
studies [4], [5]], [6], which can result in negative warning
treatments such as inappropriate silencings or dismissals.

Facilitating explainability is not only restricted to finding
better explanations than the ones already provided by the
tool. When asking for help from other colleagues, devel-
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opers seek knowledge about the analysis tool, the warning
type, or the codebase. Again, we recommend taking the de-
veloper experience into account by, for example, suggesting
to a stuck developer the name of a colleague who might
have the knowledge they seek, or by building a knowledge
database to look up warning into. In addition to using side-
channels for asking for help and looking up warnings, we
recommend analysis tools to take into account the usage
context of a company with a community of developers to
encourage collaborative positive behavior.

Focusing on tool features, RQ4 reports that when first
opening an analysis tool, Software AG developers often look
at a dashboard to get a general overview of the warnings
in the codebase. When closing the tool and while using it,
they most often look at the warnings list, which seems to be
their primary working tool. We have identified 19 concrete
features for static analysis tools, all of which should be
considered when designing an analysis tool.

Having identified how software developers use analysis
tools in industry and what motivates their behavior, we
summarize the outcomes of our study through ten design
recommendations for static analysis tools:

1) Time constraints are the primary concern of developers
when using an analysis tool. The length of a working
session with the tool should be taken into account
when designing the workflow of an analysis tool. For
example, depending on how fast a developer has been
in the past on a certain type of warning, the tool can
propose suitable warnings to fix for a given span of
time.

2) Linked to time constraints, the lack of responsiveness
of some analysis tools is a user-experience issue en-
countered by developers at Software AG. The analysis
responsiveness and the tool interface should be crafted
to minimize waiting times.

3) Static analysis relies on a set of “rules” describing the
analyzed code and how to analyze it. As they work
with analysis tools, developers build project-specific
or company-specific heuristics to deal with warnings
faster, some of which can be translated to analysis rules.
From the customization of existing rules (as already
done by some commercial analyzers) to more intelligent
learning of which rules are more useful than others [30],
developers should be allowed to contribute their heuris-
tics to the analysis.

4) Other heuristics can be harmful, and can be avoided
by improving the explainability of analysis warnings.
Explaining a warning revolves around three knowledge
bases: past exposure to certain warning types, knowing
the codebase, and knowing the analysis tool.

5) The developer knowledge mentioned above should be
integrated in recommender systems to provide users with
personalized warning suggestions, given their abilities
and their working time.

6) Developer knowledge should also be made available
to all users, through collaboration options in the analysis
tool, to provide more official alternatives of communi-
cation than the currently used side-channels. Examples
in the more general field of crowdsourcing range from
Q&A platforms like StackOverflow to real-time collab-
orative code editors [31].
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7) More generally, analysis tools should be designed to
encourage good behavior in situations when users are
blocked. Tool and interface features (e.g., Section @
should be designed with this in mind.

8) In practice, while it is generally recommended to use
multiple static analysis tools in conjunction and recoup
their warnings together, we also recommend adding dif-
ferent types of tools to cover aspects such as performance
and memory.

9) When using different tools, we recommend the use of
a single reporting platform to handle all warnings. As
shown by IBM research’s platform Khasiana [32], it
would uniformize of the usage of analysis tools across
the company, help new projects set up their analy-
sis systems, and help developers understand warn-
ings more easily by using information from different
sources. Beyond that, we argue that such a platform
would be the ideal place for centralizing developer
knowledge and fixing warnings collaboratively. The
platform would also be able to record developer usage
statistics to be reused when planning fixes.

10) The success of analysis tools directly depends on the
company’s backing. Policies enforcing the use of anal-
ysis tools and spreading awareness, should be main-
tained and developed, with for example, initiatives and
trainings to sensitize developers towards good behav-
ior when using analysis tools.

9 THREATS TO VALIDITY

Our study is limited to Software AG and therefore does not
necessarily generalize to every software company. However,
the participants showed a large diversity in experience
and programming languages, and have years of experience
working with many static analysis tools at Software AG
(RQ1-RQ2). Thus, the results of our survey reasonably
generalize to similar companies using analysis tools.

Some survey questions could be misunderstood. To min-
imize such errors, we ran a pilot survey with five developers
from Software AG. During the data extraction process, we
did not find any responses that we could interpret as a
response to a misunderstood question.

Another threat to validity is the subjective interpretation
of the free-text (Q15, Q31, and Q40) and “Others” survey
responses when we reclassified them in different categories.
However, for this survey, we did not use the free-text
questions, and we verified the classification of the “Oth-
ers” responses with two raters, with 100% agreement. The
survey questions and anonymized responses are available
online [25].

While Application 1 and Application 2 do not represent
all of Software AG’s projects, they are major projects, and
are contributed to regularly. We included all of their sub-
projects in our study, which offers diversity in terms of
project type, target platforms, and exposure to Checkmarx.

10 CONCLUSION

Through a developer survey and an analysis of two projects
at Software AG, we have drawn a picture of how static anal-
ysis tools are used in industry. Looking at the developer’s
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perspective, we saw that Software AG widely uses analysis
tools at all points of the software development process, and
that its developers mostly use analysis tools in their spare
time to fix warnings. Time constraints heavily influences the
developers’ goals, workflow, and interactions with the tools,
and should be considered when designing an analysis tool.

Developers create internal knowledge and strategies to
prioritize warnings, determine if they are true or false
positives, and decide how to handle them. Based on this
knowledge, we have identified ten recommendations for
designing and using analysis tools, such as integrating user-
specific knowledge into the warning recommender system,
allowing users to encode good heuristics in the analysis,
setting up systems to discourage negative behaviour and
encourage positive behaviour such as collaboration and cus-
tomization, areas which are generally overlooked in current
static analysis research.

We have more concretely identified 19 desirable features
for analysis tools, outlined the importance of company
policies to encourage their use, and described the need for
a central analysis platform. With this study, we advocate for
a more user-centered approach of designing static analysis
tools, in which usage context and user motivation can offer
a different design perspective and yield new requirements.
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