U Can’t Inline This!

Erick Ochoa* Cijie Xia™
SBA Research University of Toronto
eochoalopez@sba-research.orgijie. xia@mail.utoronto.ca

ABSTRACT

Inlining is a compile-time program transformation that reduces
the overhead of method calls and enables further program trans-
formations. Within a Java just-in-time (JIT) compiler, an inlining
algorithm mostly relies on a mixture of hard-coded heuristics and
call-frequency information to decide which functions to inline. To
operate on those heuristics, a traditional Java JIT inliner employs a
greedy knapsack algorithm that trades off computing an optimal
solution for the algorithm runtime performance. However, main-
taining those hard-coded heuristics is a difficult, time-consuming
task that requires years of domain expertise to fine tune. To over-
come those limitations, we present OURINLINER, a Java JIT inlining
framework that uses abstract interpretation to systematically eval-
uate inlining candidates based on both direct and indirect benefits
of inlining. To reduce the compilation overhead in the context of
a Java JIT compiler, OURINLINER computes reusable method sum-
maries. Each summary defines the potential optimizations that will
be unlocked if the Java JIT compiler inlines the underlying method
(i.e., indirect benefits). Similar to prior work, OURINLINER incorpo-
rates call-frequency information (i.e., direct benefits) to compute
the benefit of inlining and defines the cost of inlining a function
as its code size. To showcase the viability of our framework, we
have implemented OURINLINER for the open-source Eclipse OpenJ9
Java virtual machine. Compared to the state-of-the-art JIT inliner
in Eclipse OpenJ9, our empirical evaluation shows that OURINLINER
reduces compilation time by 14% and decreases the size of generated
code by 21%, while incurring a run-time overhead of only 5%.

ACM Reference Format:

Erick Ochoa, Cijie Xia, Karim Ali, Andrew Craik, and José Nelson Amaral.
2021. U Can’t Inline This!. In Proceedings of (CASCON’21). ACM, New York,
NY, USA, 10 pages.

1 INTRODUCTION

Inlining is a program transformation that replaces a call site with
the body of the callee. This transformation has two main benefits:
(1) it eliminates the overhead of method invocation and frame
allocation costs, and (2) it allows the compiler to further optimize
the code of the inlined function into its calling method. However,

“The work was done while the author was at the University of Alberta.
T The work was done while the author was at the University of Alberta.
#The work was done while the author was at IBM Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CASCON’21, November 22 - 26 2021, Toronto, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxX-X/YY/MM.

Karim Ali
University of Alberta

karim.ali@ualberta.ca

Andrew Craik¥
Oracle Labs

andrew.craik@oracle.com

José Nelson Amaral
University of Alberta

jamaral@ualberta.ca

function inlining is a program transformation that must be applied
selectively. Indiscriminate inlining leads to an increase in binary
size, compilation time, cost in program storage/transmission, and
potentially negative cache effects that diminish much of the benefits
of inlining. To select candidate functions, an inlining strategy must
carefully balance the trade-off between costs and benefits [15]. Such
strategy usually consists of four main components:

(1) Discriminants: the properties that influence inlining.

(2) Inlining budget: the inlining constraints that avoid an uncon-
trollable increase in binary size.

(3) Search space: the limited set of inlining candidates.

(4) Algorithm: determining the order in which inlining candi-
dates should be considered and whether inlining decisions
may be recanted after finding new inlining candidates.

Early work on inlining strategies uses method sizes and fre-
quency information (in the form of method invocation counters) as
discriminants [21]. More recent research focuses on providing more
precise frequency information (e.g., context-sensitive call site coun-
ters) [4, 14] or combine other sources of frequency information (e.g.,
cycle counts) into other metrics (e.g., cycle density) [25]. However,
collecting online frequency information may degrade performance
and is only useful if profiled behaviour is indicative of future pro-
gram behaviour. To improve the precision of inlining decisions,
compiler engineers may also consider static program properties
such as polymorphic call sites, interface call sites, and the function
fan-out degree. Several inlining strategies also discriminate based
on which optimizations will be unlocked after inlining [19, 22, 23].
Nevertheless, those techniques predominantly depend on deter-
mining the algorithm parameters empirically through inlining tri-
als [11], which is a difficult, time-consuming task that requires
years of domain expertise to fine tune [7].

To overcome those limitations, we present OURINLINER, a Java
JIT inlining framework that uses abstract interpretation to system-
atically evaluate inlining candidates without performing inlining
trials or fine-tuning the algorithm parameters by domain experts.
Similar to prior work, OURINLINER defines the cost of inlining a
function to be its code size. To compute the benefit of inlining,
OURINLINER combines the typical call-frequency information (i.e.,
direct benefit) with the potential optimizations that may be un-
locked after inlining (i.e., indirect benefit). To reduce the compila-
tion overhead, OURINLINER uses abstract interpretation to compute
reusable inlining summaries that contain predicates relating poten-
tial runtime values of method arguments to potential post-inlining
optimizations. To define the search space for inlining candidates,
our framework employs the notion of Inlining Dependency Tree
(IDT) [10], which is an abstract representation of the Control-Flow
Graph (CFG) of the program under analysis. Our framework then
formulates function inlining as a nested knapsack problem [10].
Unlike traditional knapsack formulations of inlining [4, 14, 21-25],

CASCON’21, November 22 - 26 2021, Toronto, Canada

JIT Compiler Traditional
P Inlining

javac

[Abstract Inlining .
1| Interpretation Summaries E
:) :

Update IDT

H Nested H
1| Knapsack OuR\NUNER,:

v
Other
—Erransformaﬂons}_[ln“ne Methods]

Figure 1: The Java JIT compilation process. The dotted re-
gion represents the new components of OURINLINER.

the nested knapsack formulation enables backtracking across many
levels along the IDT if it later finds better inlining candidates.

We demonstrate the viability of OURINLINER through a proto-
type implementation for the Eclipse OpenJ9 Java Virtual Machine
(JVM) [13]. We show that, across the Java DaCapo benchmarking
suite [6], OURINLINER reduces JIT compilation time by 14% and the
generated code size by 21%, while incurring a run-time overhead
of only 5% compared to the stock Eclipse Open]9 JIT inliner.

2 OVERVIEW OF OURINLINER

Inlining is a code transformation placed early in the compilation
flow because it may enable further optimizations. Figure 1 illustrates
the JIT compilation process of a given Java source file, including
where inlining takes place. At runtime, the JVM may issue a com-
pilation request for a specific method. The JIT compiler applies
all transformations in the compilation plan that corresponds to
that request. This step produces a compiled representation of the
method for which the JVM has issued the compilation request. The
JVM then substitutes the uses of the original bytecode method
representation with the newly compiled method representation.

OURINLINER replaces the traditional inlining transformation pass
shown in Figure 1 with a new set of components (shown within
the dotted region). First, OURINLINER defines the search space for
inlining using the IDT data structure. OURINLINER then computes
reusable method summaries that determine the invariants that hold
at a given call site for an optimization to take place. To compute the
invariants at that specific call site, OURINLINER performs abstract
interpretation on the bytecode instructions of the method body.
To update the IDT with a notion of benefit, OURINLINER applies
the computed method summaries to the static information that the
abstract interpreter has found. Based on the results computed at
this step, our nested knapsack algorithm selects the functions (i.e.,
nodes of the IDT) that should be inlined.

3 BUILDING AN INLINING DEPENDENCY TREE

Figure 1 shows that the first step in OURINLINER is building an IDT,
which is an abstract representation of the CFG of the program that
models inlining decisions. Building an IDT is a recursive process
where the stopping condition depends on not finding call sites or
call targets or the call sites and call targets that OURINLINER finds
do not fit within the remaining inlining budget.

Initially, the IDT contains only the root node (i.e., the method re-
quested for compilation). Each node in the IDT is annotated with its

Erick Ochoa, Cijie Xia, Karim Ali, Andrew Craik, and José Nelson Amaral

inlining budget (i.e., the cost that corresponds to the method size).
Therefore, the budget of the root node corresponds to the total inlin-
ing budget allowed by the JVM for this specific compilation request.
To build the IDT, OURINLINER inspects the bytecode corresponding
to the root node for inlining candidates. When OURINLINER finds
an inlining candidate whose size is less than the current budget, it
creates a new IDT node corresponding to the inlining candidate and
adds an edge between that node and the root node. OURINLINER
then computes the budget of the new node by subtracting the size
of the inlining candidate from the budget of the root and associates
it to the newly created node. After OURINLINER has built an IDT for
one of the call sites that it found in a method, it continues inspecting
the rest of the bytecodes for more call sites.

3.1 Example of Building an IDT

Figure 2 shows an example Java program and the IDT that OUrIN-
LINER builds for it. Let us assume that the JVM issues a compila-
tion request for the root method Example.main(). To build the IDT,
OURINLINER iterates over the bytecode instructions of Example.
main() looking for call sites. When OURINLINER finds a call site,
it first determines its type: static, virtual, interface, or dynamic.
For the static call to Base.staticFun() (Line 3), OURINLINER adds a
node to the IDT that corresponds to the only target for this call site.
To distinguish between different call sites, OURINLINER annotates
the edge between the root node and the node containing the call
target Base.staticFun() with the bytecode at which it found the
call site. OURINLINER then inspects the body of Base.staticFun(),
but it does not find more call sites. Therefore, it returns to Line 4 to
continue inspecting the body of the root method Example.main().
For the virtual call at Line 4, OURINLINER must distinguish
between the various potential receivers of the call. Therefore, it
adds two nodes to the IDT for Base.virtualSingle() and Derived.
virtualSingle(). Naturally, for the virtual call site with multiple
implementors at Line 5, OURINLINER should maintain context-
sensitivity. Therefore, it adds two nodes to the IDT, one for Base.
virtualMultiple() and another for Derived.virtualMultiple().
Finally, OURINLINER finds two call sites to the method Base. ctx()
(Lines 6 and 7). For each call site, OURINLINER creates a node in
the IDT and annotates the edge between that node and the root
node with the bytecode index of the call site. Depending on how
polymorphic a call site is, the implementation of OURINLINER is
flexible enough to limit how many nodes it creates by only adding
the most likely target of a virtual call making use of the runtime
information that is available through the underlying JIT compiler.

3.2 Computing Direct Benefits of Inlining

Given that OURINLINER constructs the IDT at run time, it uses two
sources of JIT profiling information: (1) Basic-block frequency: the
proportion of time likely spent on a basic block for each method,
and (2) Target frequency: the percentage of calls to each target of
a specific call site, represented as a value in the range [0-1]. To
model the direct benefits of inlining, OURINLINER uses this profiling
information to compute the call ratio, which estimates how many
times OURINLINER visits an IDT child node for each execution
of its parent. OURINLINER then annotates each node in the IDT
with its call ratio. By definition, the call ratio for the root node
(Example.main() in Figure 2) is 1. The following equation calculates

U Can’t Inline This!

1 class Example {

2 public static void main(Base b) {

3 Base.staticFun();

4 b.virtualSingle();

5 b.virtualMultiple();

6 for (int i = 0; i < 10; i++) { Base.ctx(); 2}

7 if (p1 < 0.5) { Base.ctx(); }
8}
9}

10 class Base {

11 public static void staticFun() { }

12 public static void ctx() { if (p2 < 0.5) { Base.staticFun(); } }
13 public void virtualSingle() { }

14 public void virtualMultiple() { }

15 }

16 class Derived extends Base {

17 public void virtualMultiple() { }

18 3}

CASCON’21, November 22 - 26 2021, Toronto, Canada

Example.main()

BCI: 7, CR: 0.3, RCR: 0.3

BCI: @, CR: 1, RCR: 1
Base.staticFun()

BCI: 4, CR: 1, RCR: 1

Base.virtualMultiple()

BCI: 7, CR: 0.7, RCR: 0.7

Derived.virtualMultiple()

BCI: 13, CR: 0.5, RCR: 0.5
Base.ctx()

Base.virtualSingle()

BCI: 10, CR: 10, RCR: 10

Base.ctx()

BCI: 4, CR: @, RCR: @

Derived.virtualSingle()

BCI: @, CR: 0.5, RCR: 0.25

Base.staticFun()

BCI: 0, (R: 0.5, RCR: 5
Base.staticFun()

Figure 2: Left: a Java program that illustrates how OURINLINER constructs the IDT. In this example, p1 and p2 represent sto-
chastic random variables of a uniform distribution. Right: the corresponding IDT with bytecode indices as edge annotations
to distinguish multiple calls to the same method. BCI: bytecode index, CR: call ratio, and RCR: root call ratio.

the call ratio for node n in the IDT:
basic-block frequency at call site

Il ratio(n) =
call ratio(n) basic-block frequency at parent entry

To estimate how many times an IDT node is visited for each
execution of the root node, OURINLINER computes the root call ratio
for a given node as the product of the call ratios of its ancestors:

root call ratio(n) = l_[

Ymeancestors(n) U n

call ratio(m)

3.3 Example of Computing Call Ratios for an IDT

This example illustrates the computation of the call ratios for the
IDT nodes for the call target Base. ctx () shown in Figure 2. Each call
to Example.main() calls Base.ctx() at Line 6 ten times. Therefore,
OURINLINER annotates the corresponding node with the call ratio 10.
Each call to Example.main() calls Base.ctx() at Line 7 only half the
time. Therefore, OURINLINER annotates the corresponding node
with the call ratio of 0.5. The processing of the bytecodes of Base.
ctx () reveals that each call to the method calls Basic.staticFun()
at Line 12 only half the time. Therefore, OURINLINER annotates the
corresponding node with a call ratio of 0.5. However, the root call
ratio for each node that corresponds to the call site at Line 12 is
distinct with respect to its ancestor. For the node whose parent is
the call site at Line 6, the root call ratio is 5. For the node whose
parent is the call site at Line 7, the root call ratio is 0.25.

4 ABSTRACTING THE JVM STATE

To model the JVM state at specific program points, OURINLINER em-
ploys abstract interpretation [9]. The reader might wonder why we
need this abstraction if we are already at run time and know exactly
what the JVM state is. The main reason is that OURINLINER captures
optimizations that may occur without any optimistic assumptions
about the code under analysis, which is key to reduce potential per-
formance overhead for the underlying Java JIT compiler. Therefore,
OURINLINER determines a safe state approximation at points just
before it finds a call site. Designing the abstract interpretation in
OURINLINER boils down to two main design decisions.

Xtarget frequency

First, how much of the JVM state should OURINLINER model?
Given the JIT context of OURINLINER, it is prudent to model the
least amount of information while still producing beneficial results.
To capture enough of the JVM state, OURINLINER models the local
variable array, the operand stack, and the call stack. To reduce
the memory footprint of OURINLINER, it currently does not model
the heap. Once values enter the heap, OURINLINER loses all its
information about the abstract values. Upon retrieving values from
the heap, OURINLINER only considers the bytecode instruction itself.

Second, what is a precise abstraction for each concrete value that
OURINLINER may encounter? To address this concern, OURINLINER
places abstract values from the following lattices on the abstract
operand stack or the abstract local variable array:

(1) a boolean lattice to model boolean primitive types,

(2) along-range lattice to model long-like primitive types (i.e.,
short, integer, and long),

(3) the T singleton lattice to model float and double, and

(4) a composed lattice [16] to model references, which is the
product of a boolean lattice to model null-ness, a long-range
lattice to model array lengths, and a class-hierarchy lattice
to model classes.

Figure 3 depicts the lattices that OURINLINER uses. The merge
operation for the boolean and long-range lattices is the standard
merge function. For the class-hierarchy lattice, the merge function
takes two classes and yields the first common ancestor in the class
hierarchy. For the composed lattice for references, OURINLINER
performs the merge function individually on each of its components.
Figure 3 shows the merge function for the null lattice, examples of
merging long ranges for the range lattice and of merging references
for the class-hierarchy lattice. The merge operations for the abstract
operand stack and the abstract local variable array work by iterating
the individual abstract values and merging them in order.

4.1 Abstract Interpretation in a JIT Compiler

The decision to not track abstract values once they are stored on
the heap impacts how OURINLINER abstracts several JVM bytecode
instructions. In particular, the instructions getfield and getstatic
on non-primitive data types should always return the abstract tuple

CASCON’21, November 22 - 26 2021, Toronto, Canada Erick Ochoa, Cijie Xia, Karim Ali, Andrew Craik, and José Nelson Amaral

T = (INT_MIN, INT_MAX) T =java.lang.Object
|

T /7 N\
/ \ E B
null notnull (-1,0) 0,1)
/N 7\ D
i <o (-1,-1) (0,0) (1,1) -
~ 7/
1
T (0,00 (10,10 (1,4) T E B D
T null notnull
T T T T T T T T T T
T T T T (0, 0) T (0,0) (-10, 10) (0, 4) E T E T T
null T null T (-10,10) T (-10,10) (-10,10) {-10,10) B T T B B
notnull T T notnull (1, 4) T (0, 4) (-10, 10) (1,4) D T T B D

(a) The null-ness lattice. (b) The long-range lattice.
Figure 3: The lattices, and their merge functions, that OURINLINER uses to abstract concrete values in the JVM.

(c) The class-hierarchy lattice.

(T, T, T), indicating that OURINLINER does not know whether the

public static void example(int);

value may be null, whether it is an array reference, or its class 0: iconst_0 1‘71 23‘; °

type. To obtain a more precise estimate, OURINLINER uses the in- ; :z:ge; 18: D."<init>": ()V
formation in the constant pool of the Java classe files that are 3 ifge 11 21: astore_2
currently running. The constant pool records the base class of the 6: iconst_1 ;i ?}ZZS_?

field that OURINLINER obtains through getfield, thus OURINLINER 7: istore_1 2 4; iload 0
computes the more precise estimate (T, T, ClassName), indicating ?1 .gEF° 13 100 25: foo: (LB; 1TV
that OURINLINER now knows its class type. OURINLINER models 13: ili:iej 28: return

other instructions that obtain values from the heap such as getting
values from arrays in a similar fashion.

Another consideration for doing abstract interpretation within
a JIT compiler is that OURINLINER cannot feasibly perform whole-
program analysis. Therefore, the abstract interpretation is restricted
to methods that are in the IDT. As a result, if OURINLINER finds
a call site without a corresponding IDT node, it conservatively
abstracts the return with the one given by the type signature. In
the current implementation, static information only flows down
the IDT (i.e., from call sites). However, future extensions of this
implementation may propagate information up the IDT (i.e., from
return sites). To perform abstract interpretation efficiently in the JIT
context, OURINLINER traverses the basic blocks of a given method
in reverse post-order. This order ensures that, in the absence of
cycles, OURINLINER would have interpreted all the predecessors of
a node before interpreting the node itself.

To model how the JVM maintains the concrete counterparts
of the abstract operand stack, the abstract variable array, and the
abstract call stack, we have defined the abstract semantics of all
JVM bytecode instructions in OURINLINER. At the beginning of the
interpretation of a basic block x, OURINLINER transfers the abstract
state from the direct predecessors of x (according to the control-
flow graph) to x. At the end of the interpretation of x, OURINLINER
stores the abstract state on the basic blocks and uses the abstract
state as an input to the successors of x. To compute the next abstract
state, OURINLINER uses the incoming abstract state and applies the
abstract semantics of the current instruction to it.

To facilitate abstract interpretation, directPredecessors(x) finds
the direct predecessors of a basic block x in the CFG and backEdges(x)
finds the back edges to it. OURINLINER thus handles three cases:

Case 1 |directPredecessors(x)| = 1 and directPredecessor(x) = y: y
has already been interpreted. Therefore, the final abstract
state in y is the input to the interpretation of x.

Figure 4: An example illustrating how OURINLINER per-
forms abstract interpretation.

Case 2 |directPredecessors(x)| > 1, |backEdges(x)| = 0, and
directPredecessors(x) = Y: all nodes in Y have been inter-
preted, and thus the input to the interpretation of x is the
merge of their final abstract states.

Case 3 |directPredecessors(x)| > 1, |backEdges(x)| > 0, and
backEdges(x) = Z: the direct predecessor of x and its final
abstract state are known. However, the abstract states of the
nodes along the back edges to x are unknown. Therefore, to
compute a safe approximation, OURINLINER widens those
abstract values to T right before interpreting x.

4.2 Example of Abstract Interpretation

In Figure 4, to estimate the arguments to the invokestatic instruc-
tion at bytecode index 25, OURINLINER starts interpretation at byte-
code index 0. At that point, OURINLINER does not have any informa-
tion about the variable located at index 0 in the local variable array,
except that it is an integer. At bytecode index 3, the branch con-
dition depends on the argument to example(). Since OURINLINER
does not know what values the argument may take, it analyzes all
possible branches, copying the abstract state at each control-flow
branch. At each bytecode index, Table 1 reflects the changes to the
abstract variable array. At bytecode index 8, OURINLINER creates the
abstract value (1, 1) to model the constant 1. OURINLINER modifies
another copy of the state to reflect the bytecodes at indices 11 and 13.
Given the merge point at bytecode index 14, OURINLINER merges
the states corresponding to each branch to compute the abstract
value (1, 1) LI (100, 100) = (1, 100). Finally, at bytecode index 25,
the abstract operand stack and abstract variable array contain the
final approximations that OURINLINER has computed for each local
variable in the method example().

U Can’t Inline This!

Table 1: The values in the abstract local variable array (LVA)
for the bytecode indices of the example in Figure 4.

Bytecode Index LVA Index Abstract Value

3 0 T

8 0 T

8 1 (1,1)

13 0 T

13 1 (100, 100)
14 0 T

14 1 (1,100)

25 0 T

25 1 (1,100)

25 2 (notnull, 1,D)

5 HOW DOES OURINLINER HANDLE LOOPS?

Upon entering a loop, OURINLINER has so far used the least precise
abstraction of the JVM state (i.e., T). To handle loops more pre-
cisely, OURINLINER should use an iterative dataflow algorithm that
applies successive passes of abstract interpretation to a program
until the program state converges to a stable value [18]. To reduce
the run-time overhead of this iterative solution in the JIT context,
OURINLINER uses a structural analysis and a dependency analysis.
These two analyses help the abstract interpreter in OURINLINER
determine whether the abstract JVM state may be affected by future
iterations of the looping construct under analysis.

5.1 Structural Analysis

To identify the basic blocks of a loop, we employ a structural anal-
ysis that produces a set of regions. Each region contains a set of
basic blocks or other regions. The region header dominates all ba-
sic blocks in it [18]. Our analysis identifies regions that cannot
be reduced to a single control-flow node (i.e., improper regions),
regions that contain a cycle (i.e., loops), and regions with no cy-
cles. To properly handle regions that contain other regions, the
abstract interpreter in OURINLINER treats a region as a reduced
CFG. Thus, the abstract interpretation of a region recursively in-
terprets nested regions and blocks in reverse post-order traversal.
Performing abstract interpretation on an improper region yields
the least precise abstract representation of the JVM state (T). By
definition, the smallest region that contains two regions ro and rq
is their common ancestor, which OURINLINER computes via the
helper function commonAncestor(rg, r1).

5.2 Dependency Analysis

To identify values in the abstract state that depend on previous
iterations of a loop, we designed a dependency analysis that re-
duces the number of abstract-interpretation passes required to
handle loops. To support this analysis, we augment the representa-
tion of an abstract value a to include (1) d: a set of other abstract
values that @ depends on and (2) r: the region that & originates
from. Given an abstract value a, the dependency analysis computes
the augmented abstract value &’ = (@, d, r). To compute each of
these components, we have defined the helper functions value(a’),
dependencies(a’), and region(a’). To support the computation of
these functions, we have extended all operations of the abstract
interpreter. In particular, if an interpretation produces a new value

CASCON’21, November 22 - 26 2021, Toronto, Canada

@},4y» the dependency set of a),,,, includes all values used in the in-
terpretation as well as the union of the dependency sets of these val-
ues: dependencies(a},e,,) = AUUy ¢ z dependencies(a’) where A is
the set of all abstract values used in the abstract interpretation that
produces the new abstract value a,,,,,. For example, for an addition
operation between two abstract integer values, the set A contains
the two abstract integer operands. Operations that move values to
different locations in the state (e.g., pop) do not create new values.
Operations without operands create new values that have an empty
set of dependencies. Similarly, merge functions between abstract
values (Figure 3) record the dependencies of new abstract values.
Given the abstract values a; = (@, do, ro) and &] = (a1,d1, ro), the
merged abstract value is a; M a; = (& M a1, do U dy U {ag, aj}, r0)).

5.3 Abstract Interpretation of Loops

The structural analysis in OURINLINER determines the merge block
of a loop in the CFG that has an incoming back edge. When OURIN-
LINER first encounters this merge block during abstract interpre-
tation, it has not yet interpreted its predecessor blocks that are
connected through back edges. Therefore, OURINLINER merges a
special abstract state B = (L, b,r) from the back edge and then
performs a single pass through the enclosing region of the loop
(i.e.,). Once OURINLINER has interpreted the block that is at the
origin of a back edge, it updates the set of dependencies b. If the
new value for b is different from the original one when OURINLINER
first encountered the back edge, OURINLINER merges both values
together and sets r as the current region (i.e., currentRegion) for
subsequent analysis queries that OURINLINER may issue.

After this pass, the abstract values obtained by value(a’) may be
imprecise because OURINLINER has not modelled all values that may
appear in future loop iterations. To get a better approximation for
these values, we define query(&’, currentRegion) that OURINLINER
invokes when it needs an approximation of a value at a given in-
struction in the code under analysis. To run these queries, we define
the helper function morelterations(a’) = |Va/, € dependencies(a’) .
{commonAncestor(currentRegion, region(&;l))}U{region(&')}| > 1,
where the call to commonAncestor() helps OURINLINER find loop-
invariant values. To achieve that, OURINLINER treats the values that
originate from regions nested in currentRegion as if they originate
from currentRegion. The abstract interpreter does not re-consider
those nested regions, because it has already exited them. Each in-
vocation of query() results in one of the following cases:

(1) Ifan augmented value depends oniitself (i.e., &’ € dependencies(a’)),

then OURINLINER widens its abstraction to T.

(2) If morelterations(a’) returns true, then value(a’) requires
successive passes of abstract interpretation to obtain a better
approximation for the augmented abstract values. This case
occurs when a value &’ depends on multiple regions. OURIN-
LINER may then narrow &’ by performing further passes of
abstract interpretation on the largest region in the set com-
puted by morelterations(a’). Similar to a traditional fix-point
solution for dataflow problems, OURINLINER stops iterating
when all dependencies of &’ stop changing, because no other
value may affect a’.

If morelterations(@’) returns false, then OURINLINER does
not perform further passes of abstract interpretation to find

—
(&S
=

CASCON’21, November 22 - 26 2021, Toronto, Canada

38 int a, b, ¢, d, e; // method parameters
39 while (cond) {

40 c=b+ 1;
41 b = 42;
42 e =d;
43 d=d+ 1;
44 3}

Figure 5: An example illustrating the three cases that OURIN-
LINER handles for loops. Variables d and e are examples of
the first case, b and c are examples of the second case, and a
is an example of the third case.

a better approximation for the values stored in value(a’).
This case occurs when these values are loop-invariant.

The combination of the structural and the dependency analyses
leads to a reasonable approximation after modelling a single itera-
tion through a loop. However, OURINLINER may be configured to
model further iterations of the loop by running more passes of the
combination of both analyses. This flexibility allows a JIT compiler
to configure OURINLINER to better suit its needs.

Figure 5 shows an example where the parameters originate from
region ro and values created inside the loop originate from region
r1 such that commonAncestor(rg,r1) = rp. Initially, OURINLINER
abstracts each parameter with value &; = (ay, 0, ro) where [stands
for the variable name. The following is a step by step abstract
interpretation of the first pass on that code snippet:

~r

&, =, +1="(ap+1,{a,.bc}.r)
&;,41 =42 = ((42,42),0,r1)

ag,, = 4, = (ag, {ba}ro)

ey, = Ay
4, = a+1=(ag+1.{a},bah.r1)

After the first pass of abstract interpretation on this loop, OURIN-
LINER updates the back-edge dependencies accordingly. OURIN-
LINER then finds that it should apply more iterations of abstract
interpretation to find more precise values for the variables b and c,
which yields the following abstractions:

ay, = ap | 42.{a,, bc}, 1)
ag,, = {ap + 1 43,{ay,bc},r)

6 ESTIMATING BENEFITS OF POTENTIAL
POST-INLINING TRANSFORMATIONS

In static analysis, a method summary relates dataflow facts at the
method entry to those at the method exit [20]. In OURINLINER, inlin-
ing summaries relates dataflow facts at the method entry with pred-
icates that test these facts against a specific constraint. OURINLINER
uses those predicates to compute the indirect benefits of inlining
(i-e., attributed to code transformations enabled by inlining). For
example, if a method has a branch that depends on an argument,
an optimizer may fold the branch if it statically determines that
the argument is constant. In an inlining summary, each predicate
has the form fy,(dn) = @n T ¢m, where f, indicates testing m in
the inlining summary, d, indicates testing for the n-th argument
abstraction, and ¢, is the constraint associated with test m. An

Erick Ochoa, Cijie Xia, Karim Ali, Andrew Craik, and José Nelson Amaral

inlining summary may hold zero or more m predicates. Arguments
ap will be tested against ¢,,. The test always checks whether two
elements conform to the partial-order relationship d, C ¢ém. ém
corresponds to the maximal safe value where the transformation is
possible. Therefore, d,, C ¢;, may unlock a post-inlining optimiza-
tion. To compute a single numeric value for the indirect benefit of
inlining, OURINLINER assigns a weight wp, to each predicate fy, in
an inlining summary. Then, the sum of all weighted predicates for
a specific call site is the indirect benefit of inlining that call (i.e.,
21, filan) X wi). OURINLINER then uses this value along with the
root call ratio to solve the nested knapsack problem in the IDT,
which eventually determines an optimal set of functions to inline.

6.1 Determining Predicate Constraints

OURINLINER enables a compiler engineer to compute the constraint
cm through their custom static analyses. OURINLINER then uses
the results of these analyses to generate the inlining summaries.
The current implementation of OURINLINER computes constraints
based on a set of static analyses that reason about: null checking,
branch folding, cast folding, and instanceof folding. To compute
the constraints, the abstract interpreter in OURINLINER determines
whether function arguments have been modified and tracks the uses
of arguments within a single method. Therefore, this interpreter
models values using a boolean lattice that states whether a value
has been modified or not.

To incur minimal overhead to the running JIT compiler, the ab-
stract interpreter processes one method at a time by abstracting
only the local variable array and the operand stack. The JVM Speci-
fication [17] states that upon entry to a function, the arguments are
stored in the local variable array. To model this behaviour, our ab-
stract interpreter places unmodified abstract values in the abstract
variable array. For bytecode instructions that modify these abstract
values, the abstract interpreter models their side effects to compute
the modified abstract value. When the abstract interpreter encoun-
ters an instruction that operates on an unmodified abstract value,
and that instruction can be folded away depending on that abstract
value, OURINLINER creates a predicate in the inlining summary.

6.2 Supported Analyses

6.2.1 Branch Folding. Figure 6a shows an example where a branch
fold depends on the value of the only argument to a method. To con-
struct the inlining summary, OURINLINER first places an unmodified
abstract value on the abstract variable array at bytecode index 0
to emulate entry to branch(). It then loads this argument onto the
abstract operand stack, which is later used by ifeq at bytecode
index 1. Given the JVM semantics of ifeq, if the argument is 0, then
the control flow jumps to bytecode index 6. Otherwise, the control
flow falls through to bytecode index 4. To model these execution
steps, OURINLINER generates the following inlining summary:

fo(@o) = do T (INT_MIN, -1)
fi(do) = ao £ (0,0)
fa(do) = do T (1, INT_MAX)
6.2.2 Null-Check Folding. Calls to java.lang.Object.getClass()

are used by some programmers as an implicit null check. In Fig-
ure 6b, an unmodified abstract value corresponding to the first

U Can’t Inline This!

boolean branch(boolean); void nullCheck(Example);

0: iload_0 0: aload_0

1: ifeq 6 1: Object.getClass()
4: iconst_1 4: pop

5: ireturn 5: return

6: iconst_0

7

: ireturn
(a) Branch folding (b) Null-check folding

CASCON’21, November 22 - 26 2021, Toronto, Canada

void checkCast(Base); void instanceofCheck(Base);
0: aload_o 0: aload_0
1: checkcast Derived 1: instanceof Derived
4: astore_1 4: istore_1
5: return 5: return

(c) Checkcast folding

(d) Instanceof folding

Figure 6: Examples that show how OURINLINER computes predicates for all the analyses that it currently supports.

argument of nullCheck() is the receiver of a call to java.lang.
Object.getClass(). Upon entering nullCheck (), OURINLINER places
that value on the abstract local variable array. OURINLINER models
aload_0 by loading the reference in the abstract local variable ar-
ray at position 0 to the abstract operand stack. If the value is null,
then this method always triggers an exception. If it is never null,
then this call never triggers an exception. To model this behaviour,
OURINLINER generates the following inlining summary:

fo(do) = do C (null, T, T)
fi(do) = do C (notnull, T, T)

6.2.3 Checkcast Folding. The semantics of checkcast state that the
object reference at the top of the stack must be of a type specified in
the constant pool. If the reference at the top of the stack is null, then
an exception is thrown. To model this behaviour for the example in
Figure 6¢c, OURINLINER generates the following inlining summary:

folao) = do E (not null, T, Derived)
f1(do) = do C (null, T, T)

where f corresponds to the case when the checkcast instruction
can be folded because OURINLINER has statically determined that
the cast to Derived succeeds. The predicate fi corresponds to the
case when the checkcast instruction cannot be folded. This case
occurs when OURINLINER determines that an exception will be
thrown because the operand is always null.

6.2.4
are similar. The main difference is that instanceof pushes a boolean
value to the stack, while checkcast pushes a reference. To model
this behaviour for the example in Figure 6d, OURINLINER generates
the following inlining summary:

fo(do) = do E (not null, T, Derived)
fi(do) = do C (null, T, T)

where fy corresponds to the case when the instanceof instruction
can be folded because OURINLINER has statically determined that the
return value is true. The predicate f; corresponds to the case when
the instanceof instruction cannot be folded because OURINLINER
has statically determined that the return value is false.

6.3 Bringing It All Together

To formulate function inlining as a nested-knapsack problem, OURIN-
LINER computes a single positive integer to represent the abstract no-
tion of benefit and a single positive integer to represent the abstract
notion of cost. Similar to the majority of inliners [4, 5, 14, 22-24],
OURINLINER uses method size to abstract the cost of compilation
without modifying the size of functions as a proxy for inlineabil-
ity. Instead, OURINLINER maintains the cost of inlining a method

Instanceof Folding. The semantics of checkcast and instanceof

proportional to their sizes to prevent code growth caused by in-
lining large methods. To determine the abstract notion of benefit,
OURINLINER combines the direct and indirect benefits of inlining:

benefit = root call ratio X (1 + indirect benefit)

This equation balances between the two components of the ab-
stract notion of benefit. The root call ratio represents how likely the
function executes once the control flow enters the compilation unit.
The indirect benefits are an estimation for the benefits brought by
optimizations that may be applied to the caller function after inlin-
ing. Therefore, the total benefit of inlining takes into consideration
the frequency of execution of optimized code. The 1 is added to the
expression to avoid multiplying by 0 in case OURINLINER does not
find any indirect benefits.

7 EVALUATION

To evaluate OURINLINER, we have implemented a prototype of it as
an experimental fork of the Eclipse OpenJ9 compiler infrastructure.
We have also contributed our implementation to the open-source
repository of Eclipse Open]9 [2]. Our evaluation compares that
implementation with BASEINLINER, the state-of-the-art JIT inliner
in Eclipse Open]J9, by attempting to answer the following research
questions:

e RQ1: How does OURINLINER affect compilation time?
e RQ2: How does OURINLINER affect the generated code size?
e RQ3: How does OURINLINER affect the program running time?

7.1 Machine Setup

We ran all experiments on an x86_64 machine with four 2.4 GHz
AMD EPYC 7351 16-Core processors with a total RAM of 472 GB.
The machine runs Ubuntu 18.04.4, Eclipse OpenJ9 VM version 0.23.0
(SHA: ee576d818), Eclipse OMR (SHA: 9f5372509), and a Java Class
Library that is compatible with Java 1.8 (SHA: 03cb3a3 based on
jdk8u232-b09). To avoid the effects of stop-the-world garbage col-
lection events from dominating the execution of the benchmarks,
we set the JVM heap to 1 GB. This setup is larger than the default, al-
lowing the generational garbage collector enough space to operate
without having to run a stop-the-world compact. Thus, we reduce
the effect of completely pausing the running program to execute a
garbage collection task. To avoid potential non-determinism that
Non-Uniform Memory Access (NUMA) may introduce, we pinned
the running process to use active cores from a single NUMA node.

7.2 Benchmark Setup

Our evaluation uses 10 DaCapo 9.12 Bach benchmarks [6] that run
on JDK 8 [12]. To reach a stable state, each benchmark executes for
several iterations until the JVM has been warmed up. The number of
warmup iterations for each benchmark is based on the JIT compiler

CASCON’21, November 22 - 26 2021, Toronto, Canada

Table 2: Warmup iterations for each DaCapo benchmark.

Benchmark # Iterations Benchmark # Iterations
AVRORA 60 JYTHON 100
ECLIPSE 10 LUINDEX 600
FOP 1,000 pMD 100
LUSEARCH 100 SUNFLOW 100
H2 100 XALAN 400

activity: the JVM has finished the warmup stage when it runs at
least 3 iterations of the benchmark without any JIT compilation
requests, or when it has not issued new compilation requests in the
last 30 seconds of execution. Table 2 shows the number of warmup
iterations for each benchmark.

After a benchmark reaches the end of the warmup stage, it runs
one more time to record the program running time. To ensure that
compiling a benchmark does not affect the measurements of other
benchmarks, each benchmark runs in an isolated environment. To
account for variations in execution time that may be introduced
by background processes, each measurement is executed 10 times.
For each benchmark, we report the arithmetic mean over those
runs and the standard deviation based on modelling the recorded
points for each run as a gaussian distribution. A single execution
batch consists of running each benchmark once in a given order. To
avoid bias in measurements due to variables not under control, we
randomized the order of executing the benchmarks in each batch.

7.3 Compilation Time (RQ1)

The compilation time reported is the sum of the compilation time
spent by each compilation thread in Eclipse Open]J9. Figure 7 shows
the average and the standard deviation for the total compilation
time of each benchmark program, normalized to the average total
compilation time that BASEINLINER reports.

Across all analyzed programs, OURINLINER is 14% (geometric
mean) faster than BASEINLINER. In particular, OURINLINER com-
piles ECLIPSE, FOP, JYTHON, LUINDEX, LUSEARCH, PMD, and XALAN
faster than BASEINLINER, while it compiles H2 almost as fast as Ba-
SEINLINER. The only exceptions are AVRORA and SUNFLOW, where
OURINLINER spends more time compiling the benchmarks compared
to BASEINLINER (approximately 16% and 14%, respectively). These
results show that, for most programs in our benchmark, OURIN-
LINER does not induce significant overhead to JIT compilation in
comparison to traditional techniques, suggesting that OURINLINER
is viable within a JIT compiler.

7.4 Generated Code Size (RQ2)

Compilation time is related to the generated code size because most
compiler optimizations have super-linear time complexity on the
code size [5]. Therefore, in addition to evaluating the compilation-
time overhead of OURINLINER, we also evaluate the amount of com-
piled code that it generates. The code size for each compiled method
body is the difference between the start and the end addresses of
the method obtained through the verbose option in Eclipse Open]9.
The total generated code size is the sum the generated code sizes for
all the compiled method bodies. Figure 7 shows the average total
generated code size of each benchmark program with its respective

Erick Ochoa, Cijie Xia, Karim Ali, Andrew Craik, and José Nelson Amaral

standard deviation across different runs, normalized to the average
total generated code size that BASEINLINER reports.

Across all analyzed programs, OURINLINER generates 21% (geo-
metric mean) less code compared to BASEINLINER. In particular,
OURINLINER generates less code for all programs except AVRORA
(approximately 2% more generated code). This large difference is
due to BASEINLINER conflating the notions of method size with
method frequency information. This design favours inlining hot
methods with large sizes, while consuming less of the inlining bud-
get than considering only the original method size. In contrast,
OURINLINER does not alter the notion of method code size, but
rather selects inlining candidates based on the combination of call-
frequency information and potential post-inlining optimizations.

7.5 Program Running Time (RQ3)

The program running time is reported by the DaCapo benchmark-
ing infrastructure for each iteration of the benchmark. We measure
this time after each benchmark program has reached the warmup
stage. Figure 7 shows the average and the standard deviation for
the running time of each benchmark, normalized to the average
program running time when using BASEINLINER.

Across all analyzed programs, OURINLINER causes only a 5%
(geometric mean) increase in the program running time compared
to using BASEINLINER. This increase is dominated by the results for
FOP, H2, and JYTHON, where OURINLINER incurs approximately 20%,
11%, and 21% increase in program running time, respectively. For all
other benchmarks, the program running time when using OURIN-
LINER is roughly similar to the case when using BASEINLINER. To
understand why OURINLINER induces an overhead in the program
running time for Fop, H2, and JYTHON, we conducted a performance
analysis for these benchmark runs using the Linux perf command.

For rop and jYTHON, the difference is due to an engineering
decision about inlining in BASEINLINER that happens outside of
the inlining cost-benefit calculation. A module breakdown from
the perf data for ropr shows that OURINLINER runs j9vm29.so for
8.5% of the time, while BASEINLINER runs it for only 2% of its time.
For yyTHON, a module breakdown shows that the time that OURIN-
LINER spends running jovm29.so is double that of BASEINLINER.
This time difference means that OURINLINER spends more time
interpreting code than BASEINLINER. Upon analyzing the sym-
bol breakdown from the perf data for these runs, we see that
OURINLINER shows VM_BytecodeInterpreterCompressed::run and
java.util.concurrent.ConcurrentHashMap.put() at the top of its
profile for For and jYTHON, respectively. These methods are at
the bottom of the profile for BASEINLINER. Further investigation
shows that the main reason for this behaviour is that BASEINLINER
handles calls to sun.misc.Unsafe.get() and sun.misc.Unsafe.put()
in a different way than other calls. In particular, BASEINLINER al-
ways inlines these calls by marking them with a special flag that
leads the code generator to recognize the methods and generate
high-speed code for them, regardless of the decisions of the under-
lying inlining algorithm. On the other hand, OURINLINER does not
have any special handling for any method, and solely depends on
the computed benefit of inlining based on its algorithm.

For H2, the difference is due to BASEINLINER conflating the notion
of method size to enable inlining larger methods than specified by

U Can’t Inline This!

CASCON’21, November 22 - 26 2021, Toronto, Canada

—_
. —
N

(S|

o
~
«
T
|

Normalized Compilation Time
-
Normalized Generated Code Size

0.5

1.5 |- -

1.25 |~ i -

Normalized Running Time
-

0.5 ——
Q
s FC g 6 ogi» “\o «»P‘e R

*P;x@ = ;‘«a

é
\:\

0.5 ——
O S50t ‘<‘«<\ oﬁ*
+° ¢

ﬂ& \ﬂ\)y,\‘ ﬂ& j}» \,PS\
\')

Figure 7: The compilation time, generated code size, and program running time for each of the analyzed DaCapo benchmarks
when compiled by OURINLINER, in logarithmic scale, normalized to that of BASEINLINER. The error bars with (-) endpoints
are for OURINLINER, while those with (-) endpoints are for BASEINLINER. Values smaller than 1 are better.

the input configuration. Additionally, BASEINLINER employs a few
heuristics that avoid inlining warm methods into other warm meth-
ods as well as inlining scorching methods into methods at lower
optimization levels. A module and symbol breakdown from the
perf data shows that OURINLINER spends more time in the kernel,
suggesting that the code generated by OURINLINER has not enabled
the underlying JIT compiler to perform its lock elimination opti-
mization. Further analysis of the performance profile reveals that
this is because OURINLINER failed to inline a hot method because it
exceeds the maximum inlining budget, causing the JIT not to reap
the post-inlining benefits of inlining that method. This example
indicates that further development effort in the modular design
of OURINLINER—tO estimate the benefit of lock elimination in this
case—would improve its runtime performance.

7.6 Discussion and Threats to Validity

7.6.1 Applicability of OURINLINER. The goal of an inlining strategy
is to improve the performance of the analyzed program in one of
three aspects: compilation time, generated code size, or run-time
performance. Our empirical evaluation has shown that, compared
to BASEINLINER, OURINLINER achieves that goal for the first two
aspects, but not necessarily for the third one. That is despite the
limited engineering resources that we could put towards building
OURINLINER compared to the detailed fine tuning by domain experts
that BASEINLINER has seen over the years.

The current implementation of OURINLINER supports a few sim-
ple static analyses that track constants and null values throughout
the analyzed program, without resorting to any heuristics that
BASEINLINER has baked into its checks. We believe that future ex-
tensions of OURINLINER (e.g., adding static analyses that model
the heap) will only improve its performance to be on par with the
industry-grade BASEINLINER. Nevertheless, we still believe that the
current implementation of OURINLINER has its potential in some
usage scenarios such as running in a cloud environment. In this
environment, startup time and footprint are likely to be more im-
portant, for which OURINLINER is already better than BASEINLINER.
Additionally, the inlining summaries that OURINLINER computes al-
low compiler engineers to better understand why a certain inlining
decision was taken by the JIT compiler, as opposed to the heuristics
employed in other techniques. Compiler engineers would then be
better equipped to debug, maintain, and improve their codebase.

7.6.2 Generality of Results. Since our primary focus is providing
a new technique for Java JIT compilation, we chose to evaluate
OURINLINER compared to BASEINLINER using the standard DaCapo
benchmarks [6]. One might argue though that compilers typically
operate on open programs (i.e., inputs are unknown) while these
benchmarks are either closed programs (i.e., do not take an input)
or have known inputs (e.g., LUSEARCH and LUINDEX). However, our
choice facilitates a fair, reproducible comparison between OURIN-
LINER and BASEINLINER where both operate on the same data every
time to produce a deterministic behaviour. Since the algorithms
within OURINLINER do not depend on program inputs, we do not
consider operating on a standard benchmark to be a limitation of
our evaluation methodology.

Given that we have developed OURINLINER only for Java, we can-
not generalize our results to other languages that also compile to
the JVM bytecode such as Scala, Clojure, and Groovy. The primary
reason is that each of these languages implement the translation
of the source language to JVM bytecode instructions in various
ways that are quite different compared to Java [1]. For example,
Groovy, Clojure, Python, and Ruby employ heavy use of reflection,
invokedynamic, and run-time code generation. On the other hand,
Scala, OCaml, and Scheme employ techniques that are similar to
Java when compiling their source language to JVM bytecode in-
structions. We consider experimenting with those languages as a
potential future direction for OURINLINER that is orthogonal to the
contributions that this paper presents.

8 RELATED WORK

There has been a large body of work on JIT compiler optimiza-
tions. This discussion is limited to related work about the main
components of the inlining strategy.

Discriminants. Early work on inlining used call-site heuristics to
select inlining candidates. In particular, Scheifler [21] use profile in-
formation at call sites to determine which functions to inline. Hazel-
wood and Grove [14] use the method size as a way to determine
which methods to inline. Dean and Chambers [11] inline methods
whose type group information indicates that an optimization may
take place post inlining. Shankar et al. [23] proposes an inliner that
assigns positive values to methods that, once inlined, will lead to
decrease in object churn. Sewe et al. [22] favours methods that lead
to further inlining without guards. Unlike discriminants used in
that prior work, OURINLINER presents a more general approach that

CASCON’21, November 22 - 26 2021, Toronto, Canada

models call-site invariants, and their relationship with the method
body, to obtain a more accurate model of potential post-inlining
optimizations.

Prokopec et al. [19] have recently presented an approach that
alternates between inlining and optimizations by incrementally
exploring the program’s call graph. This exploration is similar to
exploring the IDT in OURINLINER. However, our approach does not
depend on fine-tuning heuristics through inlining trials which is a
hard, time-consuming task that requires plenty of domain expertise.

Algorithm. Prior work has traditionally modelled inlining as
a variant of the knapsack problem [3, 24]. Arnold et al. [4] and
Shankar et al. [23] presents a greedy knapsack algorithm with dif-
ferent weights and values of inlining candidates. Other possibility
for solving the knapsack problem includes dynamic programming,
however, the dynamic-programming solution to the knapsack prob-
lem is not often used for inlining. Chang et al. [8] proves that
inlining is a more complex problem than the knapsack problem.
Therefore, no existing algorithm produces an optimal inlining plan.
One of the novelties in the OURINLINER approach is tomodel inlin-
ing as a nested knapsack problem [10], which allows it to model
the mutual dependency between finding new inlining candidates
and processing the newly found call sites in them.

Search Space. Most inlining strategies do not consistently define
a notion of search space. Instead, they rely on previous inlining
decisions to determine which call sites should be analyzed [3, 8, 14,
21, 24]. This inconsistency is due to the limitations of the greedy
knapsack variants that inliners have traditionally used, which may
lead to missing potential post-inlining optimizations. To the best of
our knowledge, OURINLINER is the first strategy that formulates a
well-defined search space through the construction of the IDT.

9 CONCLUSION

Traditional JIT compilers rely on hard-coded heuristics and profile
information to select inlining candidates. However, those heuristics
are hard to maintain and require several years of domain expertise
to fine tune. To overcome these limitations, we have presented
OURINLINER, a framework for Java JIT inlining that provides a
systematic way of modelling the direct and indirect benefits of in-
lining. To achieve that, OURINLINER employs abstract interpretation
to generate inlining method summaries that it then applies to the
estimated runtime values at call sites. To showcase the viability of
OURINLINER, we implemented a prototype for Eclipse OpenJ9 that
supports a small set of static analyses. Compared to the state-of-
the-art JIT inliner in Eclipse OpenJ9 and across the Java DaCapo
benchmarking suite, OURINLINER has 14% less compilation time
and generates 21% less code. The current implementation, with
significant less development effort than BASEINLINER, incurs only
5% increase in program running time.

REFERENCES

[1] Karim Ali, Xioani Lai, Zhaoyi Luo, Ondfej Lhotak, Julian Dolby, and Frank Tip.
2019. A Study of Call Graph Construction for JVM-Hosted Languages. IEEE
Transactions on Software Engineering (TSE) (nov 2019), (accepted to appear).

[2] Anonymous Authors. 2020. Eclipse OpenJ9. URL not shown to comply with the

double-blind review process..

Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and Peter F.

Sweeney. 2005. A Survey of Adaptive Optimization in Virtual Machines. Proc.

IEEE 93, 2 (2005), 449-466. https://doi.org/10.1109/JPROC.2004.840305

(3

=

—_

4]

[s

G

[8

[

[10

[11

[12

=
)

[15]

(17

[18

[19

[20

)
=

[22

[23

[24]

[25

Erick Ochoa, Cijie Xia, Karim Ali, Andrew Craik, and José Nelson Amaral

Matthew Arnold, Stephen J. Fink, Vivek Sarkar, and Peter F. Sweeney. 2000. A
Comparative Study of Static and Profile-Based Heuristics for Inlining. In ACM
SIGPLAN Workshop on Dynamic and Adaptive Compilation and Optimization
(Dynamo). 52-64. https://doi.org/10.1145/351397.351416

Paul Berube. 2012. Methodologies for Many-input Feedback-directed Optimization.
Ph.D. Dissertation. Edmonton, Alta., Canada. Advisor(s) Amaral, Jose Nelson.
https://doi.org/10.7939/R3DW8K AAINR89287.

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks:
Java Benchmarking Development and Analysis. In ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA).
169-190. https://doi.org/10.1145/1167473.1167488

John Cavazos and Michael F. P. O’Boyle. 2005. Automatic Tuning of Inlining
Heuristics. In ACM/IEEE Conference on High Performance Networking and Com-
puting. 14. https://doi.org/10.1109/SC.2005.14

Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-mei W. Hwu. 1992.
Profile-guided Automatic Inline Expansion for C Programs. Journal on Software:
Practice and Experience 22, 5 (1992), 349-369. https://doi.org/10.1002/spe.
4380220502

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In POPL. 238-252.

Andrew J Craik, Rachel E Craik, and Patrick R Doyle. 2017. Expanding Inline
Function Calls in Nested Inlining Scenarios. US Patent App. 15/245,241.

Jeffrey Dean and Craig Chambers. 1994. Towards Better Inlining Decisions Using
Inlining Trials. In ACM Conference on LISP and Functional Programming. 273-282.
https://doi.org/10.1145/182409.182489

Eclipse Open]9. 2019. DaCapo Exceptions. https://github.com/eclipse/
openj9/issues/4859.

Eclipse OpenJ9. 2021. Eclipse Open]9. https://www.eclipse.org/openj9/.

4] Kim M. Hazelwood and David Grove. 2003. Adaptive Online Context-Sensitive

Inlining. In International Symposium on Code Generation and Optimization (CGO).
253-264. https://doi.org/10.1109/CG0.2003.1191550

Owen Kaser and C. R. Ramakrishnan. 1998. Evaluating Inlining Tech-
niques. Computer Languages 24, 2 (1998), 55-72. https://doi.org/10.1016/
S0096-0551(98)00003-4

Sorin Lerner, David Grove, and Craig Chambers. 2002. Composing Dataflow
Analyses and Transformations. In ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL). 270-282. https://doi.org/10.1145/503272.
503298

Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2014. The Java
Virtual Machine Specification-Java SE 8 Edition.

Steven S. Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and Thomas
Wiirthinger. 2019. An Optimization-Driven Incremental Inline Substitution Algo-
rithm for Just-in-Time Compilers. In International Symposium on Code Generation
and Optimization (CGO). 164-179.

Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. 1995. Precise Interprocedural
Dataflow Analysis via Graph Reachability. In ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL). 49-61. https://doi.org/10.
1145/199448.199462

Robert Scheifler. 1977. An Analysis of Inline Substitution for a Structured
Programming Language. Commun. ACM 20, 9 (1977), 647-654. https:
//doi.org/10.1145/359810.359830

Andreas Sewe, Jannik Jochem, and Mira Mezini. 2011. Next in Line, Please!:
Exploiting The Indirect Benefits of Inlining by Accurately Predicting Further
Inlining. In Conference on Systems, Programming, and Applications: Software for
Humanity (SPLASH). 317-328. https://doi.org/10.1145/2095050.2095102
Ajeet Shankar, Matthew Arnold, and Rastislav Bodik. 2008. Jolt: Lightweight
Dynamic Analysis and Removal of Object Churn. In ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA).
127-142. https://doi.org/10.1145/1449764.1449775

Edwin Steiner, Andreas Krall, and Christian Thalinger. 2007. Adaptive Inlin-
ing and On-Stack Replacement in the CACAO Virtual Machine. In Interna-
tional Symposium on Principles and Practice of Programming in Java (PPPJ)
(ACM International Conference Proceeding Series), Vol. 272. 221-226. https:
//doi.org/10.1145/1294325.1294356

Peng Zhao and José Nelson Amaral. 2003. To Inline or Not to Inline? Enhanced
Inlining Decisions. In International Workshop on Languages and Compilers for
Parallel Computing (LCPC) (Lecture Notes in Computer Science), Vol. 2958. Springer,
405-419. https://doi.org/10.1007/978-3-540-24644-2_26

https://doi.org/10.1109/JPROC.2004.840305
https://doi.org/10.1145/351397.351416
https://doi.org/10.7939/R3DW8K
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1109/SC.2005.14
https://doi.org/10.1002/spe.4380220502
https://doi.org/10.1002/spe.4380220502
https://doi.org/10.1145/182409.182489
https://github.com/eclipse/openj9/issues/4859
https://github.com/eclipse/openj9/issues/4859
https://www.eclipse.org/openj9/
https://doi.org/10.1109/CGO.2003.1191550
https://doi.org/10.1016/S0096-0551(98)00003-4
https://doi.org/10.1016/S0096-0551(98)00003-4
https://doi.org/10.1145/503272.503298
https://doi.org/10.1145/503272.503298
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/359810.359830
https://doi.org/10.1145/359810.359830
https://doi.org/10.1145/2095050.2095102
https://doi.org/10.1145/1449764.1449775
https://doi.org/10.1145/1294325.1294356
https://doi.org/10.1145/1294325.1294356
https://doi.org/10.1007/978-3-540-24644-2_26

	Abstract
	1 Introduction
	2 Overview of OurInliner
	3 Building an Inlining Dependency Tree
	3.1 Example of Building an *idt
	3.2 Computing Direct Benefits of Inlining
	3.3 Example of Computing Call Ratios for an *idt

	4 Abstracting the JVM State
	4.1 Abstract Interpretation in a *jit Compiler
	4.2 Example of Abstract Interpretation

	5 How Does OurInliner Handle Loops?
	5.1 Structural Analysis
	5.2 Dependency Analysis
	5.3 Abstract Interpretation of Loops

	6 Estimating Benefits of Potential Post-Inlining Transformations
	6.1 Determining Predicate Constraints
	6.2 Supported Analyses
	6.3 Bringing It All Together

	7 Evaluation
	7.1 Machine Setup
	7.2 Benchmark Setup
	7.3 Compilation Time (RQ1)
	7.4 Generated Code Size (RQ2)
	7.5 Program Running Time (RQ3)
	7.6 Discussion and Threats to Validity

	8 Related Work
	9 Conclusion
	References

