
Detecting Security Vulnerabilities in
Object-Oriented PHP Programs

Mona Nashaat
University of Alberta
nashaata@ualberta.ca

Karim Ali
University of Alberta
karim.ali@ualberta.ca

James Miller
University of Alberta

jimm@ualberta.ca

Abstract—PHP is one of the most popular web development
tools in use today. A major concern though is the improper
and insecure uses of the language by application developers,
motivating the development of various static analyses that detect
security vulnerabilities in PHP programs. However, many of these
approaches do not handle recent, important PHP features such as
object orientation, which greatly limits the use of such approaches
in practice. In this paper, we present OOPIXY, a security analysis
tool that extends the PHP security analyzer PIXY to support
reasoning about object-oriented features in PHP applications.
Our empirical evaluation shows that OOPIXY detects 88%
of security vulnerabilities found in micro benchmarks. When
used on real-world PHP applications, OOPIXY detects security
vulnerabilities that could not be detected using state-of-the-art
tools, retaining a high level of precision. We have contacted
the maintainers of those applications, and two applications’
development teams verified the correctness of our findings. They
are currently working on fixing the bugs that lead to those
vulnerabilities.

I. INTRODUCTION

Static analysis is often used to detect security vulnerabilities
in programs, because it enables a security analyst to reason
about the program without executing it [1]. Security review
tools usually scan the whole program to report the security vul-
nerabilities found in the code [2]. For PHP, many tools, such
as Pixy [3], RIPS [4], PHPSAFE [5] and Weverca [6], have
been developed to detect such vulnerabilities. However, certain
features of PHP, such as include calls, dynamic arrays,
and dynamic object-oriented programming (OOP) features,
represent major challenges for these approaches. In particular,
it is challenging for these tools to reason about the semantics
of OOP features in PHP due to its object model. In PHP,
object properties do not necessarily have to be declared before
accessing them. Therefore, most PHP security tools either do
not support (OOP) features in PHP, or partially provide some
support at the cost of sacrificing precision and soundness. This
limited support cripples the ability of such tools to detect
vulnerabilities in a large class of PHP applications, going back
to PHP 5 when OOP features were first introduced.

Figure 1 shows a simple PHP script that defines a
class Object (Line 2) that declares the variable $value

(Line 4). The class overrides the toString method and
returns $value (Line 7). The script instantiates an object of
that class (Line 11), and assigns the URL parameter ’text’
to $obj->value (Line 12). Finally, the script echoes $obj

to the browser (Line 13), which eventually calls toString to

1 <?php
2 class Object
3 {
4 var $value;
5 function toString()
6 {
7 return $this->value;
8 }
9 }

10
11 $obj = new Object();
12 $obj->value = $_GET[’text’];
13 echo $obj;
14 ?>

Fig. 1. A running example that illustrates OOP features in PHP.

print the value of $value. This last line of the script represents
a cross-site scripting (XSS) vulnerability, because it prints out
an unsanitized value to the browser. Most of the popular PHP
analysis tools cannot detect this vulnerability. In particular, the
example script uses object references that are not supported by
RIPS [4]. Additionally, analyzing the script requires thorough
class modelling, which is beyond the support for arrays and
object manipulation in Weverca [6]. An analyzer that detects
vulnerabilities similar to the one listed in Figure 1 should
model the class Object properly and track all its methods
to capture the propagation of private information throughout
the program.

In this paper, we present OOPIXY, a static analysis tool
that detects security vulnerabilities in PHP programs that
use OOP features. OOPIXY uses interprocedural data-flow
analysis [7] to track values of variables and analyze dynamic
data structures such as objects and arrays. OOPIXY reports
various types of security vulnerabilities, including cross-site
scripting (XSS) [8], SQL injection [9], remote code execu-
tion, remote command execution, and XPath injection [10].
OOPIXY extends the open-source static code scanner Pixy [3]
by providing OOP support. This support enables OOPIXY to
analyze more recent PHP programs (PHP 5 and onward), while
the original PIXY analyzers only supports PHP 4. Moreover,
OOPIXY can detect a wider range of vulnerabilities compared
to PIXY that can only detect XSS and SQL injection vulnera-
bilities. To evaluate OOPIXY, we conducted two experiments,
one using micro benchmarks, and the other is a case study
of analyzing real-world open-source PHP applications. Our

Fig. 2. The original architecture of PIXY.

implementation also provides a convenient visualization of the
detected vulnerabilities.

II. BACKGROUND

A. Overview of PIXY

PIXY is an open source static analysis tool for PHP pro-
grams. The tool is implemented in Java, and scans PHP 4
programs for XSS and SQL injection attacks. Figure 2 shows
the original architecture of PIXY. First, the tool parses the
input program into an intermediate representation called P-Tac,
which is similar to the classical three-address code (TAC) [11].
PIXY then converts the parse tree into a control-flow graph
(CFG) using a module called TAC Converter. Afterwards,
PIXY runs an alias analysis to collect alias information for
variables, followed by a literal analysis that uses the collected
alias information to track values of variables throughout the
program. Finally, PIXY runs a taint analysis to determine
tainted variables (i.e., hold private information). Jovanovic
et al. [3] present the first version of PIXY that could only
detect XSS vulnerabilities in simple PHP programs. The same
authors published a later paper that describes an extension of
PIXY that models PHP aliasing [7]. PIXY has also received
several other upgrades throughout the years, such as support
for detecting SQL injection attacks.

B. Data-Flow Analysis

Data-flow analysis algorithms follow the propagation of data
throughout a program by traversing the CFG and marking
where data values are generated and where they are used [3].
This information is used in security review tools to determine
if private data leaks outside the program without applying
proper sanitization. The analysis uses a lattice to represent
the type of collected information, such that any information
associated with a CFG node is an element of the lattice. Each
CFG node is also associated with a transfer function that
takes a lattice element as input and returns a lattice element
as output. Each transfer function models the semantics of
its corresponding CFG node with respect to the collected
information. The analysis applies the transfer functions to
propagate the information through the program, and combines
information at merge points (e.g., after if conditions).

Data-flow analyses have different trade-offs between pre-
cision and scalability. A flow-sensitive analysis considers the
ordering of program instructions, whereas a flow-insensitive

Fig. 3. The architecture of OOPIXY. The components with dashed lines
represent modifications or additions to the original architecture of PIXY.

analysis treats a program as a set of unordered instructions.
Inter-procedural analyses handle function calls, while intra-
procedural analyses operate within a single function. Context-
sensitive analyses distinguish between different call sites to
a function, unlike context-insensitive analyses that merge the
information computed for different calls to the same function.
Hence, the highest precision can be achieved by performing
an analysis that is flow-sensitive, inter-procedural, and context
sensitive [3]. However, inter-procedural analysis sometimes
sacrifices precision to achieve scalability (e.g., handling re-
cursive function calls).

III. IMPLEMENTATION OVERVIEW

We have designed OOPIXY to support the dynamic OOP
features in PHP 5 applications by adding new modules and
modifying existing ones in PIXY. OOPIXY is available on
Github1, we committed the changes to a forked repo of
the official PIXY repository. We have issued a pull request
to contribute back our changes to the community. Figure 3
shows the architecture of OOPIXY where the components with
dashed lines represent modules that we added or modified
in the original architecture of PIXY. These changes include
adding the ability to scan newer versions of PHP, supporting
OOP features in PHP, detecting more types of security vul-
nerabilities, and visualization for the reporting system.

Similar to PIXY, OOPIXY transforms the input program
into a parse tree, then into the intermediate language P-
Tac [11]. OOPIXY then performs various static analyses to
enrich the intermediate model with information regarding
aliases and literal values. Finally, OOPIXY invokes DepClients
objects to detect the security vulnerabilities in the generated
CFG and generate the final report.

A. PHP Parser

To analyze newer versions of PHP, we replaced the PHP
parser module in PIXY with a new parser that supports PHP 5.
We generated the new parser in OOPIXY using JFlex, a
lexical analyzer generator for Java [12] and a modified version
of the Constructor of Useful Parser (CUP) v0.10 tool [13].
To generate the new parser, we also modified the JFlex
lexical specification file to include the keywords and features
introduced in PHP 5 and later such as the new OOP keywords

1https://github.com/uasys/oopixy

that specify access modifiers for methods and properties,
interfaces and namespaces, and exception handling features.
We use the generated lexer class and the parser specification
file to generate the new PHP parser using CUP. OOPIXY uses
the new PHP parser to generate the parse tree for the input
program.

B. TAC Conversion

In addition to generating a new PHP parser for OOPIXY,
we have also modified the intermediate model construction in
PIXY to accommodate OOP features. This module performs
two main tasks. First, it examines the constructed parse
tree and transforms it into the corresponding CFG. Since
OOPIXY has a new parser, we changed this module such
that it can process the new parse trees with PHP 5 support.
Second, the module tracks definitions of custom classes, object
references, user defined methods and variables, namespaces
and interfaces. This feature enables OOPIXY to resolve each
custom object to its class definition during the analysis phases.
Therefore, OOPIXY can detect vulnerabilities hidden in user
defined objects and custom methods, such as the vulnerability
introduced in Figure 1. This also helps OOPIXY detect coding
bugs like duplicated variables or methods definitions.

C. New Vulnerability Detectors

PIXY can only detect SQL injection and XSS vulnerabili-
ties. OOPIXY extends the original analysis phases by imple-
menting new DepClient classes that detect command execu-
tion, code evaluation, and XPath injection vulnerabilities. Each
new DepClient defines the related sinks, sources, and sani-
tization routines, and overrides the appropriate detectVulns

method. This method traverses the constructed CFG to deter-
mine, at each program point, whether it may hold a tainted
value or not, and report any detected vulnerabilities.

D. Results Visualization

OOPIXY forwards the detected vulnerabilities to its report-
generation module, which creates a vulnerability record for
each sensitive sink that may receive tainted data at runtime.
The record includes the file name that contains the vulnerabil-
ity, the line number, and the type of the detected vulnerability.
All these records are exported in the final report. We have
also enhanced the reporting module with a new visualization
module that can create dependence graphs [14] for the tainted
variables. Dependence graphs include all the files and func-
tions names by which a tainted variable passed until it reached
the sink, which helps the user understand the source of a set of
related vulnerabilities. Our new visualization module can also
visualize the dependence graphs using Graphviz [15]. This
new visualization helps the user (e.g., a security analyst or a
developer) better understand the reported results by presenting
the complex analysis relationships in a graphical form.

Figure 4 shows the dependence graph produced by OOPIXY
for the XSS vulnerability reported in Figure 1. The dependence
graph illustrates that a tainted variable named $obj reaches
the sink at Line 13. The graph traces back the origin of the

Fig. 4. The dependence graph that OOPIXY generates for the XSS Vulner-
ability depicted in Figure 1.

taint to Line 12 where the URL parameter text is assigned
to the variable $obj->value.

IV. EVALUATION

A. Setup
To evaluate OOPIXY, we compare it to three state-of-the-art

PHP static analysis tools PIXY [3], RIPS [4] and Weverca [6]
with respect to precision and recall. We have conducted two
sets of experiments using (1) micro benchmarks and (2) a
case study on real-world open-source PHP applications. We
compare OOPIXY to PIXY to evaluate the improved capa-
bilities that our modules add to PIXY. Since RIPS is one
of the few PHP static analysis tools that support PHP 5,
comparing OOPIXY to it provides important insights regarding
support for recent PHP 5 features. However, the most recent
generation of RIPS is commercial. We have requested an
academic license to conduct our experiments, but our request
was denied. Therefore, our evaluation uses the last open-source
version 0.55. Finally, comparing to Weverca evaluates the
ability of OOPIXY to resolve some of the dynamic features
of PHP such as OOP.

Throughout our evaluation, we will use the following def-
initions of precision (P), recall (R), and Fmeasure (F) [16].
Precision is the ratio of the number of true positives (TP) over
the number of reported errors, which includes the reported true
positives and false positives (FP).

P =
TP

TP + FP
(1)

Recall is the ratio of the number of true positives (TP) over
the number of actual errors, which is the sum of reported true
positives, and false negatives that were not detected (FN).

R =
TP

TP + FN
(2)

Fmeasure provides an aggregate measure for precision and
recall. For a given tool, the Fmeasure ranges between 0 and
1. We will use P, R, and Fmeasure to provide a ranking of the
accuracy of the tools under study.

Fmeasure =
(2 ∗ P ∗R)

P +R
(3)

B. Micro Benchmarks

Our micro benchmarks consist of 110 PHP files that define
55 different test cases that were developed by de Poel et
al. [17] to evaluate a set of open source and commercialized
PHP analyzers. The test cases are divided into three categories:
Vulnerability Detection, Language Support, and Sanitization
Routine Support. Table I illustrates the categories of micro
benchmarks, the subjects in each category, the number of tests
in each subject, and the results of our experiments. Each test
consists of a program that exhibits a security vulnerability
and a fixed program that resolves the vulnerability. Since
we evaluate both true positives and false positives, for each
program, we run two tests, true positive test (TPT) and false
positive test (FPT). A given tool passes a TPT if it detects the
vulnerability in the vulnerable file, and it passes FPT when it
does not issue a warning for the file that has the fix.

The results in Table I show that OOPIXY detects all
types of vulnerabilities in the micro benchmarks except for
Argument Injection, which is currently not supported in the
implementation of OOPIXY. The original tool, PIXY, can only
detect Server-Side Include and Cross-Site Scripting, and a
subset of the SQL Injection vulnerabilities. Moreover, RIPS
does not detect one test case for each of Argument Injection,
SQL Injection, XPath Injection, and Cross-Site Scripting. Un-
like OOPIXY, Weverca can only detect Cross-Site Scripting,
Server-Side Include and SQL Injection vulnerabilities. For
the OOP features, OOPIXY detects vulnerabilities in Object
Model files, including vulnerabilities in custom objects and
classes. For that subject, OOPIXY passes 7 out of 8 tests,
including the test case that Figure 1 illustrates. On the other
hand, both RIPS and PIXY do not pass any of these tests, while
Weverca only passes 5 tests. As for sanitization support, OOP-
IXY detects weak sanitization routines when they are used
instead of strong sanitization routines. OOPIXY fails in only
one test in this category. For this test, the htmlspecialchars
sanitization routine is used to sanitize a parameter of an
SQL query. To pass the test, an analysis tool should report a
vulnerability, because mysql_real_escape_string should
be called in this case to sanitize the parameter instead of
htmlspecialchars. However, the current implementation
of OOPIXY mistakenly considers htmlspecialchars as a
strong sanitization method, which causes OOPIXY to skip
reporting a vulnerability for this test. On the other hand, RIPS
passes this test successfully, while both Weverca and PIXY do
not report the vulnerability at all.

Across all the micro benchmarks, OOPIXY has better
precision (0.75) than PIXY (0.64) and Weverca (0.63), but
falls slightly short when compared to RIPS (0.80). However,
OOPIXY has better recall (0.88) than any of the state-of-the-art
tools (PIXY: 0.82, RIPS: 0.77, and Weverca: 0.76). In general,
OOPIXY has a better combined precision and recall (F: 0.80)
than the state-of-the-art tools (PIXY: 0.70, RIPS: 0.76, and
Weverca: 0.66).

C. Case Studies

To evaluate the viability of OOPIXY in real-world settings,
we have conducted case studies that involve a set of five
open-source large PHP web applications that are available
on GitHub. Table II shows the complete list of the appli-
cations in our study. For each application, the table shows
its name, the application version that is used in the exper-
iments, and the lines of code calculated using the CLOC
package [18]. The first four applications in the case stud-
ies tests are the content-management systems Xoops [20],
phpnuke [21], b2evolution [22], and concrete5 [19]. The
fifth application is the open-source community-edition for the
ecommerce platform Magento [23]. For each application, we
have manually reviewed the security report that each tool
generates to identify false positives. Table II shows the running
time, the number of vulnerabilities detected by each tool, and
the corresponding precision value.

PIXY throws parsing errors for all applications, because
they all use syntax of PHP 5 or higher, which the tool does
not support. Additionally, Weverca crashes when it analyzes
Xoops and does not report any warning for phpnuke and
Magento. Across all the programs in our case study, OOPIXY
is twice as precise as RIPS on average (RIPS: 0.36, OOPIXY:
0.632). Further investigation shows that, for phpnuke, most of
the false positives that RIPS report are within the installation
files, because RIPS marks most of the installation parameters,
such as database name, database user name, and database
password, as tainted variables. However, these parameters are
sanitized using the user-defined function mosGetParam().
For Xoops, RIPS reports false positives about variables that
are sanitized using the user-defined functions xformfield()
and xoFormFieldCollation(). On the other hand, for
concrete5, OOPIXY is less precise than RIPS, because it
mistakenly considers the h() function as a bad sanitization
routine.

Table II also shows the overall running time for each tool,
which is the time it took the tool to completely analyze the
application and generate the final report. On average, OOPIXY
is 1.76× faster than RIPS (min: 0.75×, max: 4.9×, geometric
mean: 1.76×). However, we observed that, for Magento and
phpnuke, OOPIXY is slower than RIPS, where it spends most
of the running time in parsing and resolving file inclusions.
At first glance, Weverca seems to have the best performance,
because it has, by far, the lowest running times for all
applications in our case study. Further investigation shows that
Weverca takes such a short time to finish the analysis because
it does not properly analyze the given programs and, therefore,
does not detect any of the security vulnerabilities that the may
exhibit.

To further validate the findings of our case studies, we have
sent a set of the reported true positives to the development
team of each application. For Xoops, we reported a XSS
vulnerability in register.php that allows unsanitized vari-
ables to be echoed to the browser. The development team has
responded to our report and they are currently working on a

TABLE I
VULNERABILITY DETECTION IN MICRO BENCHMARKS.

OOPIXY PIXY RIPS Weverca

Category Subject # Tests TP FP P R F TP FP P R F TP FP P R F TP FP P R F

Vulnerability Detection

Argument Injection 1 0 1 - 0.00 - 0 1 - 0.00 - 0 1 - 0.00 - 0 1 - 0.00 -
Command Injection 2 2 2 1.00 1.00 1.00 0 2 - 0.00 - 2 2 1.00 1.00 1.00 0 0 0.00 0.00 -
Code Injection 2 2 2 1.00 1.00 1.00 0 2 - 0.00 - 2 1 0.67 1.00 0.80 0 2 - 0.00 -
SQL Injection 6 6 4 0.75 1.00 0.86 2 6 1.00 0.33 0.50 5 6 1.00 0.83 0.91 5 4 0.71 0.83 0.77
Server-Side Include 2 2 2 1.00 1.00 1.00 2 1 0.67 1.00 0.80 2 1 0.67 1.00 0.80 2 0 0.50 1.00 0.67
XPath Injection 2 2 2 1.00 1.00 1.00 0 2 - 0.00 - 1 2 1.00 0.50 0.67 0 0 0.00 0.00 -
Cross-Site Scripting 3 3 3 1.00 1.00 1.00 3 3 1.00 1.00 1.00 2 3 1.00 0.67 0.80 3 3 1.00 1.00 1.00

Language Support

Aliasing 4 4 4 1.00 1.00 1.00 4 0 0.50 1.00 0.67 3 1 0.50 0.75 0.60 4 1 0.57 1.00 0.73
Arrays 2 2 0 0.50 1.00 0.67 2 0 0.50 1.00 0.67 2 2 1.00 1.00 1.00 1 0 0.33 0.50 0.40
Constants 2 1 1 0.50 0.50 0.50 2 1 0.67 1.00 0.80 1 2 1.00 0.50 0.67 0 2 - 0.00 -
Functions 5 5 1 0.56 1.00 0.71 5 3 0.71 1.00 0.83 2 5 1.00 0.40 0.57 5 3 0.71 1.00 0.83
Dynamic Inclusion 3 1 1 0.33 0.33 0.33 1 1 0.33 0.33 0.33 0 3 - 0.00 - 1 3 1.00 0.33 0.50
Object Model 8 7 5 0.70 0.88 0.78 0 7 0.0 0.0 - 0 8 - 0.00 - 5 5 0.63 0.63 0.63
Strings 3 3 3 1.00 1.00 1.00 3 3 1.00 1.00 1.00 3 3 1.00 1.00 1.00 3 1 0.60 1.00 0.75
Variables 3 2 1 0.50 0.67 0.57 2 1 0.50 0.67 0.57 1 2 0.50 0.33 0.40 2 1 0.50 0.67 0.57

Sanitization Support

Regular Expressions 2 2 1 0.67 1.00 0.80 2 0 0.50 1.00 0.67 2 0 0.50 1.00 0.67 2 0 0.50 1.00 0.67
SQL Injection 1 1 1 1.00 1.00 1.00 0 1 - 0.00 - 1 1 1.00 1.00 1.00 0 1 - 0.00 -
Strings 2 2 1 0.67 1.00 0.80 2 0 0.50 1.00 0.67 2 0 0.50 1.00 0.67 2 0 0.50 1.00 0.67
Cross-Site Scripting 2 2 2 1.00 1.00 1.00 2 2 1.00 1.00 1.00 2 2 1.00 1.00 1.00 1 2 1.00 0.50 0.67

Geometric Mean - - 0.75 0.88 0.80 - - 0.64 0.82 0.70 - - 0.80 0.77 0.76 - - 0.63 0.76 0.66

TABLE II
VULNERABILITY DETECTION IN CASE STUDIES.

OOPIXY PIXY RIPS Weverca

Application Version LOC Time (s) TP FP P Time (s) TP FP P Time (s) TP FP P Time (s) TP FP P

Xoops 2.5.8.1 111,456 31.00 24 14 0.63 Parsing Error 152.61 8 39 0.17 Crash
phpnuke 8.3.1 195,120 312.00 33 12 0.73 Parsing Error 278.24 33 49 0.40 0.05 0 0 -
b2evolution 6.8.8 294,992 287.00 12 8 0.60 Parsing Error 329.53 5 8 0.38 4.01 0 0 -
concrete5 8.1.0 437,042 142.00 31 27 0.53 Parsing Error 151.99 17 9 0.65 0.07 0 3 0.00
Magento 2.1.5 1,728,396 685.00 2 1 0.67 Parsing Error 511.75 2 8 0.20 0.01 0 0 -

fix. For b2evolution, OOPIXY detects a XSS vulnerability
in the file inc\tools\mtimport.ctrl.php that prints posts
to the page. The maintainers of b2evolution have validated
the vulnerability that we reported to them. However, the devel-
opers believe that the issue does not represent a huge problem,
because it is on the administrative side of the application,
which is typically not exposed to the regular user.

V. RELATED WORK

There exist a considerable number of security assessment
tools for PHP. For example, PhpSAFE [5] is a static analysis
tool that analyzes plugins developed for PHP-based content
management systems (CMS). However, PhpSAFE can only
detect Cross-Site Scripting (XSS) and SQL Injection vul-
nerabilities. The tool is also highly customized to detect
vulnerabilities in CMS plugins, focusing on OOP features
while ignoring other challenges such as dynamic inclusions.

PIXY [3] is the first open source tool for statically detecting
taint-style vulnerabilities in PHP programs. However, PIXY
only supports up to PHP 4, and cannot reason about OOP
features that were introduced in later versions of the language.
Since PIXY does not provide any support for OOP features,
it generates many false negatives, rending its analysis results
unsound. Moreover, PIXY has high false positive rate, because
it cannot resolve various dynamic features of PHP such as
dynamic file inclusion.

RIPS [4] is a static source code analyzer written in PHP
using the built-in tokenizer functions. RIPS can detect more

than twenty types of taint-style vulnerabilities including XSS,
SQL injection, code execution, and file inclusion. However,
the last open source release of RIPS does not support OOP
features in PHP and ignores alias relations between variables.

Weverca [6] is a static analysis framework for PHP. Wev-
erca first parses PHP programs to construct abstract syntax
trees that include the intermediate representation, then it
performs the analysis. However, Weverca does not scale to
large programs, e.g., mutllidae [24] and Xoops from our
case studies. Additionally, Weverca does not categorize the
reported vulnerabilities which makes it challenging for code
reviewers to understand the reported results.

VI. CONCLUSION

Web applications present a major role in almost all principal
services in our daily life. However, vulnerabilities that threaten
the personal data of users are discovered frequently. This paper
introduces OOPIXY, a tool that detects security vulnerabilities
in PHP applications. Unlike the state of the art, OOPIXY can
reason about OOP features of PHP, track object references,
user-defined methods, and variables. Our empirical evaluation
shows that OOPIXY has a better combination of precision and
recall compared to other available open-source tools. When
analyzing real-world PHP applications, OOPIXY detects vul-
nerabilities that other tools cannot detect, including some
vulnerabilities that have been verified by the development
teams behind these applications.

REFERENCES

[1] Dimastrogiovanni, Carlo, and Nuno Laranjeiro. ”Towards Understanding
the Value of False Positives in Static Code Analysis.” Dependable Com-
puting (LADC), 2016 Seventh Latin-American Symposium on. IEEE,
2016.

[2] K. Goseva-Popstojanova and A. Perhinschi, ”On the capability of static
code analysis to detect security vulnerabilities,” Information and Software
Technology, vol. 68, pp. 18-33, 2015.

[3] N. Jovanovic, C. Kruegel, and E. Kirda, ”Pixy: A static analysis tool
for detecting web application vulnerabilities,” in IEEE Symposium on
Security and Privacy, 2006, pp. 6 pp.-263.

[4] J. Dahse and T. Holz, ”Simulation of Built-in PHP Features for Precise
Static Code Analysis,” in NDSS, 2014.

[5] P. J. C. Nunes, J. Fonseca, and M. Vieira, ”phpSAFE: A security analysis
tool for OOP web application plugins,” in IEEE/IFIP, 2015, pp. 299-306.

[6] D. Hauzar and J. Kofro, ”WeVerca: Web Applications Verification for
PHP,” in International Conference on Software Engineering and Formal
Methods, 2014, pp. 296-301.

[7] N. Jovanovic, C. Kruegel, and E. Kirda. ”Precise alias analysis for static
detection of web application vulnerabilities,” in Proceedings of the 2006
workshop on Programming languages and analysis for security. ACM,
2006.

[8] S. Gupta and B. Gupta, ”Cross-Site Scripting (XSS) attacks and defense
mechanisms: classification and state-of-the-art,” International Journal of
System Assurance Engineering and Management, pp. 1-19, 2015.

[9] M. K. Gupta, M. Govil, and G. Singh, ”Static analysis approaches
to detect SQL injection and cross site scripting vulnerabilities in web
applications: A survey,” in ICRAIE, 2014, pp. 1-5.

[10] M. I. P. Salas, P. L. De Geus, and E. Martins, ”Security Testing
Methodology for Evaluation of Web Services Robustness-Case: XML
Injection,” in IEEE World Congress on Services, 2015, pp. 303-310.

[11] N. Jovanovic, C. Kruegel, and E. Kirda, ”Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities (Technical Report),” Secure
Systems Lab, Vienna University of Technology, 2006.

[12] G. Klein. JFlex - The Fast Scanner Generator for Java. 2009.
[13] S. E. Hudson, F. Flannery, C. S. Ananian, D. Wang, and A. W. Appel,

”Cup parser generator for java,” Princeton University, 1999.
[14] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C.

Kruegel, et al., ”Saner: Composing static and dynamic analysis to validate
sanitization in web applications,” in IEEE Symposium on Security and
Privacy, 2008, pp. 387-401.

[15] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull,
”Graphviz and dynagraphstatic and dynamic graph drawing tools,” in
Graph drawing software, Springer, 2004, pp. 127-148.

[16] G. Chatzieleftheriou and P. Katsaros, ”Test-driving static analysis tools
in search of C code vulnerabilities,” in COMPSACW, 2011, pp. 96-103.

[17] N. L. de Poel, F. B. Brokken, and G. R. R. de Lavalette, ”Automated
security review of PHP web applications with static code analysis,”
Master’s thesis, 2010.

[18] A. Danial, Cloc count lines of code. 2009.
[19] ’concrete5’, 2017. [Online]. Available: https://www.concrete5.org/

download. [Accessed: 23- March- 2017].
[20] ’XOOPS Web Application System’, 2016. [Online]. Available: https:

//sourceforge.net/projects/xoops/. [Accessed: 23- March- 2017].
[21] ’PhpNuke The first PHP CMS’. [Online]. Available: https://www.

phpnuke.org/modules.php?name=Release. [Accessed: 23- March - 2017].
[22] b2evolution, 2016. [Online]. Available: http://b2evolution.net/

downloads/. [Accessed: 03- April- 2017].
[23] Magento 2017. [Online]. Available: https://magento.com/products/

community-edition#interstitial/. [Accessed: 03- April- 2017].
[24] OWASP Mutillidae, Web Pen-Test Practice Application, 2016. [On-

line]. Available: https://sourceforge.net/ projects/mutillidae/. [Accessed:
23- Oct- 2016].

