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Abstract—Software vulnerabilities are ubiquitous and costly.
To detect vulnerabilities earlier during development, organiza-
tions deploy a set of static analyzers to locate and eventually
fix these vulnerabilities before releasing their software. Due
to the prohibitive cost of running all available analyzers, or-
ganizations must run only a subset of all possible analyzers
on their codebases. Choosing this set deterministically leaves
recognizable gaps of vulnerability coverage. To overcome these
challenges, we present Randomized Best Response (RBR), a
method that computes an optimal randomization over size-
bounded sets of available static analyzers. RBR models the
relationship between malicious users and organizations as a
leader-follower Stackelberg security game. Our solution focuses
on software vulnerabilities due to their security implications when
exploited by malicious users. Using 8 static analyzers for C/C++
and 8 Common Weakness Enumeration (CWE) vulnerability
types, we show that RBR outperforms a set of natural baselines
by always picking analyzers that achieve a higher benefit to the
defender. Through a case study of a large system at Oracle, we
show how RBR may be used in a real-world scenario.

I. INTRODUCTION

Software vulnerabilities are ubiquitous and costly. Accord-
ing to The Consortium for IT Software Quality (CISQ), poor
software quality cost the US economy 2.08 trillion dollars
in 2020 [1]. Poorly designed software enables malicious
users to exploit vulnerabilities, which are bugs with security
implications, within it to perform various types of attacks. To
control the damage of potential attacks, companies typically
run static analyzers on their source code before releasing a new
version. Running static analyzers helps detect, and potentially
fix, software vulnerabilities earlier during development, which
drastically decreases the cost of potential losses [2]. However,
running all available static analyzers is never an option due
to the prohibitive cost of running and configuring them on
large, real-world codebases. For example, Google’s monolithic
codebase consists of 2 billion lines of code for all its services,
for which Google, despite its vast resources, can only run 1–2
static analyzers (e.g., FindBugs) at a time to detect software
vulnerabilities in such a large codebase [3]. The overhead
of this process comes not just from running the analyzers,
but also from sifting through the generated results, ignoring
potential false positives, to fix any vulnerabilities. The more
tools to run, the more potential for false positives to go
through, which prior research has identified as one of the main
reasons for developers abandoning the use of static analyzers
in industry [3].

While prior work has thoroughly investigated how devel-
opers in industry use static analyzers [4], few reveal how a
company may choose a set of static analyzers to run on a
project. To pick the most suitable set of analyzers, a company
needs to consider several aspects. First, the set of analyzers
should prioritize vulnerabilities of paramount importance to
the company. Second, the selection criteria should consider
how malicious users may exploit potential vulnerabilities. The
existence of malicious users rules out the straightforward
approach of using a deterministic set of analyzers because
it leaves a fixed coverage gap between vulnerability types.
Prior work has shown that malicious users are getting aware of
traditional decision-making approaches that defence strategists
would employ to hinder potential attacks [5]. Even if the
coverage gap between analyzers does not immediately expose
a vulnerability to malicious users, it may offer hints about
where to probe for vulnerabilities. Therefore, simply using
a deterministic set of analyzers that performs well on the
historical distribution of attacks is not sufficient. A company
may overcome these limitations by randomly choosing a set of
analyzers to run according to a probability distribution. That
way, there is less information about the defence system in
effect that may leak to malicious users. This approach is also
relevant to companies that opt for building analysis ecosystems
such as Google’s Tricorder [6] or Microsoft’s CloudBuild [7].
The designers of these ecosystems still need to select the
analyzers that should be included in their ecosystems based on
their coverage, false positive rate, and ease of use. However,
how should they best select these static analyzers?

Together with our industry partners at Oracle, we have ex-
plored the problem of finding an optimal set of static analyzers
to run. The goal of a team at Oracle Labs is to maximize
detecting certain types of vulnerabilities by running a set of
static analyzers without exceeding a given resource limitation.
Since the team needs to commit their code changes frequently,
running all available analyzers would result in long analysis
time, hindering developers from checking vulnerability reports
in time. Moreover, for each code patch, release management
teams at Oracle may prioritize fixing all vulnerabilities of
a certain type (e.g., buffer overflow). Thus, the selection
scheme should reflect the user’s need to detect certain types
of vulnerabilities.

To address the practical need of the team at Oracle, in
this paper, we present Randomized Best Response (RBR),
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a method for finding an optimal randomization over size-
bounded sets of static analyzers with adjustable parameters
for quantifying the value of a vulnerability type and the
cost of running an analyzer. RBR assumes that attackers
will optimally respond to whichever randomization that the
defender chooses. In RBR, the software company (i.e., Oracle)
plays the role of the defender and malicious users who try to
compromise the software play the attacker role. We model the
problem of finding an optimal randomization of analyzers as
a Stackelberg security game [8], which we express as a Mixed
Integer Linear Program (MILP). We then compute an optimal
set of analyzers by solving that MILP.

Modelling any scenario game theoretically requires a de-
scription of the participants’ utilities, which is often manually
specified by domain experts. To estimate the utilities in our
model, we use the data from the BegBunch dataset [9] to
evaluate the performance of 8 static analyzers for C/C++,
which serve as the set of potential candidate analyzers to
chose from. To realistically estimate the impact and difficulty
of exploiting a detected vulnerability, we use the National
Vulnerability Database [10]. Our empirical evaluation shows
that RBR outperforms a number of natural defence strategies.
To verify how our approach fares in practice, we discuss
a case study on an old version of the codebase A from
Oracle and compare the defence strategy suggested by RBR
with the defence strategy at Oracle when the old version of
the codebase was released. We deploy RBR with adjusted
parameters towards a team at Oracle Labs and verify that RBR
is able to suggest a defence strategy that provides a wide range
of vulnerability coverages while considering resource usage.

II. BACKGROUND

A. Stackelberg Games

Stackelberg games [11] are non-cooperative games between
two players: a leader L and a follower F . Each player i in a
Stackelberg game has a set of available actions Ai, and the
player i decides the action to take according to their strategy
si ∈ Si = ∆(Ai), where ∆(X) is the set of all distributions
over X . We use action profile (aL, aF ) ∈ AL × AF to
denote that the leader performs the action aL and the follower
performs the action aF . Similarly, we use strategy profile
(sL, sF ) ∈ SL × SF when the leader and the follower have
the strategies sL and sF , respectively. In particular, a strategy
is mixed if it assigns positive probabilities to multiple actions.

The outcome of a Stackelberg game is fully determined by
the realized action profile. Each player i has a utility function
ui : AL×AF → R that maps an action profile to a utility that
measures how much the player prefers the outcome, with each
player preferring higher-utility outcomes. Both players aim
to maximize their expected utilities, where the expectations
are taken over the action distributions induced by the strategy
profile. Players seek to maximize their own utility function; the
utilities of other players are important to a player only insofar
as they help predict other players’ actions. We overload the

notation of the utility function to represent expected utility
when the strategies of L and F are given:

ui(sL, sF ) =
∑

(aL,aF )∈AL×AF

sL(aL)× sF (aF )× ui(aL, aF ).

(1)
Formally, a Stackelberg game proceeds as follows:

1) The leader chooses a strategy sL ∈ SL.
2) The follower observes sL.
3) The follower chooses a strategy sF ∈ SF based on sL.
4) An action profile (aL, aF ) is sampled with aL ∼ SL and

aF ∼ SF .
5) Each player i receives utility ui(aL, aF ).

B. Stackelberg Equilibrium

In a Stackelberg game, the utility that a player receives
depends on both their own actions and the actions of the other
player. We define the best responses for player i to strategy
sk as a set of actions:

BRi(sk) = {ai ∈ Ai | ui(ai, sk) ≥ ui(a
′
i, sk) ∀a′i ∈ Ai}

(2)
where sk is the strategy of the other player. We say action a
for player i is a best response to strategy sk if and only if
a ∈ BRi(sk).

In a Stackelberg game, a strategy profile in which both
players are behaving optimally is called a Stackelberg equi-
librium. There can be multiple such equilibria in a game,
especially when the follower is indifferent between multiple
actions given the strategy of the leader. In this paper, we focus
on a particular refinement of Stackelberg equilibrium called the
strong Stackelberg equilibrium (SSE), in which the attacker
breaks ties in favor of the defender [12].

Definition 1 (Strong Stackelberg Equilibrium). A strategy
profile (s∗L, s

∗
F ) is a strong Stackelberg equilibrium if it

satisfies the following:
1) uL(s

∗
L, BRF (s

∗
L)) ≥ uL(s

′
L, BRF (s

′
L)) ∀s′L ∈ SL

2) s∗F (aF ) > 0 =⇒ aF ∈ BRF (s
∗
L) ∀aF ∈ AF

3) uL(s
∗
L, s

∗
F ) ≥ uL(s

∗
L, aF ) ∀aF ∈ BRF (s

∗
L)

C. Security Games

Security games are a frequently used framework in which
security situations are modelled as Stackelberg games [13].
The two players are the Defender (i.e., the leader role), and
the Attacker (i.e., the follower role). In a security scenario,
the attacker observes the defender’s behaviour over time before
taking actions, allowing the attacker to estimate the defender’s
strategy before performing an attack. This setup motivates the
use of Stackelberg games for modelling these scenarios.

In this paper, we use the compact security games frame-
work by [14]. The defender seeks to defend a set of targets
T = {t1, . . . , tn} using a set of resources R = {r1, . . . , rm}.
The defender chooses a distribution over resources as defence
strategy while the attacker observes the defence strategy and
chooses a distribution over targets to attack. Each resource
r ∈ R induces a coverage vector pr ∈ [0, 1]n, with each
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element prt representing the probability that target t will be
covered by r. When the attacker attacks a covered target, the
attack fails; otherwise, the attack succeeds. When an attack
on target t succeeds, the attacker receives utility u1

a(t) and the
defender receives utility u1

d(t). When an attack on target t fails,
the attacker receives utility u0

a(t) and the defender receives
utility u0

d(t). These utilities are not constrained to be zero-
sum; i.e., it is not necessarily the case that u1

d(t) = −u1
a(t).

As an extension of the original security game model [14],
we use a function costi(r, t) where i ∈ {a, d} to represent
the cost of deploying a resource r or attacking a target t. The
utility of a player i when the attacker attacks target t and the
defender chooses a resource r with coverage vector pr is

ui(p
r, t) = prtu

0
i (t) + (1− prt )u

1
i (t)− costi(r, t). (3)

When the defender chooses a mixed strategy sd ∈ ∆(R)
and the attacker chooses a mixed strategy sa ∈ ∆(T ), the
expected utilities are computed in the straightforward way as

ui(sd, sa) =
∑
r∈R

∑
t∈T

sd(r)× sa(t)× ui(p
r, t). (4)

III. SECURITY GAMES FOR VULNERABILITY DETECTION

To reduce the prohibitive cost of running all available
static analyzers, and to avoid running a deterministic set of
analyzers, we present RBR, a security-game model for finding
an optimal randomized set of static analyzers to run. In RBR, a
software publisher (e.g., Oracle) plays the role of the defender,
while a malicious user is an attacker. The attacker seeks to take
advantage of a set of vulnerabilities V in the source code of the
defender, while the defender aims at preventing exploitation
while still providing access to their services. We assume all
attackers have the same utility function and, therefore, the
optimal strategy for the defender generalizes over all games.
The single attacker that we are assuming is in reality an
aggregate of many different attacker types. The data that we
use to estimate the attacker utility model are for an aggregate
typical attacker, so it makes sense that we use a typical
attacker approach as well. In reality, different attackers might
have different utility functions due to their ability to exploit
a vulnerability, but it is straightforward to extend our RBR
to multiple attacker types by encoding the interaction as a
Bayesian game against a distribution of attacker types.

We associate each analyzer with its accuracy and probability
of detecting vulnerabilities. RBR constrains the number of
analyzers that the defender can use by a budget b. The set S
of resources thus consists of all subsets of analyzers with size
b. We refer to these subsets as schedules of analyzers with a
budget b. The defender chooses a distribution over schedules
as a defence strategy before the attacker chooses which vul-
nerability to attack. RBR finds an optimal distribution, which
is chosen once, and then sampled from whenever the analyzers
are to be run.

A. Utility Model

In our security game model, the company plays the role of
the defender by sampling a schedule as the defender strategy

according to a fixed probability distribution. Each schedule
s has an associated probability p(s, v) of detecting an attack
targeting v, and a cost cd(s) of running the schedule. In our
empirical evaluation, we estimate the detection probabilities,
runtime, configuration cost, and accuracy of a schedule based
on the performance of the underlying analyzers. We then cal-
culate the utility for each schedule based on those estimations.
RBR may be further extended to include other resource costs.

The attacker, which aims to explore and exploit a vulnera-
bility, chooses a vulnerability type to attack. Each vulnerability
type has an impact on the defender when the attack succeeds.
We say that a defender receives a negative reward rd(v) for
failing to detect a vulnerability of type v. The attacker receives
a reward ra(v) for successfully attacking v, and incurs a
cost ca(v) for attacking v. We estimate the cost ca based
on the exploitability of the vulnerability. We estimate the
reward ra(v) to the attacker and a negative reward rd(v) to the
defender of a successful attack on v based on the impact of the
exploited vulnerability. The attacker’s utility from exploiting
vulnerability type v when the defender chooses schedule s is

ua(s, v) = (1− p(s, v))ra(v)− γaca(v) (5)

where γa is the relative weighting of the units of reward and
the units of cost. The utility for the defender is

ud(s, v) = (1− p(s, v))rd(v)− γdcd(s) (6)

where γd is the trade-off between units of cost and units of
reward. The reward for a detected attack is 0 for the defender.

B. Finding Optimal Randomized Strategies

To solve for an SSE for the game defined above, we encode
the game as a MILP. Assuming that the attacker will best
respond, solving that MILP efficiently computes the optimal
schedule randomization for the defender.

The defender’s decision variables are the set {p̃s | ∀s ∈ S},
where p̃s is the probability of running s. Constraints (10) and
(11) ensure that each p̃s is a valid probability. The attacker’s
decision variables are the set {ỹv | ∀v ∈ V }, where ỹv is the
probability of attacking vulnerability type v. Constraints (8)
and (9) ensure that exactly one element of ỹ is set to 1,
with all others set to 0; i.e., the attacker is constrained to
deterministically attack a single vulnerability type.

Constraint (12) forces the attacker strategy ỹ to best respond
to the defender’s strategy. For the exploited vulnerability type
v∗, Ũa must exactly equal the attacker’s expected utility∑

s∈S p̃sua(s, v
∗), because the difference between Ũa and the

attacker’s expected utility must be both weakly greater and
weakly less than 0. For every other unexploited vulnerability
type v, the same variable Ũa must be weakly greater than
the expected utility of attacking v; i.e., there must not be
any other vulnerability types with a strictly greater expected
utility, given the strategy of the defender. The constant Z is an
arbitrarily large value; its presence allows us to upper bound
the difference between Ũa and expected utility for v∗ at 0,
while removing the upper bound for the other vulnerabilities.
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maximize Ũd − α
∑
t∈T

c̃tK(t) (7)

subject to ỹv ∈ {0, 1} ∀v ∈ V (8)∑
v∈V

ỹv = 1 (9)

0 ≤ p̃s ≤ 1 ∀s ∈ S (10)∑
s∈S

p̃s = 1 (11)

0 ≤ Ũa −
∑
s∈S

p̃sua(s, v) ≤ (1− ỹv)Z ∀v ∈ V

(12)

Ũd −
∑
s∈S

p̃sud(s, v) ≤ (1− ỹv)Z ∀v ∈ V

(13)
c̃t ∈ {0, 1} ∀t ∈ T (14)
p̃s ≤ c̃t ∀s ∈ S, t ∈ T (S) (15)

Constraint (13) serves a similar role for the defender’s
expected utility. Ũd is required to be weakly less than the
defender’s expected utility given its mixed strategy p̃ and
the attacked vulnerability type. Since Ũd is the maximization
objective, there is no need for a lower bound to force equality.

We extend the classical encoding of an SSE by intro-
ducing Constraint (14) and Constraint (15). One particular-
ity of analyzer selection is how to model the configuration
cost that a company must spend before using an analyzer.
Although configuration cost is an attribute of the analyzer
itself, incorporating it into ud(s, v) fails to realistically model
practical scenarios. For example, let’s assume that RBR
suggests the strategy: p({A,B}) = 0.8, p({A,C}) = 0.1,
and p({C,D}) = 0.1. The solution means that the defender
must first deploy 4 analyzers (A, B, C, and D), despite
running only two of them at a time. To precisely model the
configuration cost in RBR, we use T to represent the set of
candidate analyzers and overload it as a function that maps
a schedule to the set of all analyzers used in this schedule.
Thus, Constraint (15) restricts the MILP to only assign a
non-zero probability to schedules only if all analyzers in the
schedule have been configured. The configuration cost is then
subtracted from the defender’s utility after being scaled with
a user-defined parameter α.

IV. ESTIMATING PARAMETERS OF OUR UTILITY MODEL

Our utility model has a number of free parameters: the set
V of vulnerability types, the set R of available analyzers, the
set S of schedules, the probabilities p(s, v) of detection, the
coefficient α that scales the configuration cost, the costs ca
and cd, the rewards ra and rd, and the tradeoffs γa and γd
between rewards and costs. To use RBR, a company is free to
use its own criteria to estimate these parameters to reflect their
best needs. In this section, we will present our estimates for
these parameters based on the needs of our industry partners

TABLE I: CWE types that we consider in our evaluation.

CWE Name CWE ID CWE Name CWE ID

Command Injection 78 Memory Leak 401
Classic Buffer Overflow 120 Use After Free 416
Integer Overflow 190 Use of Uninitialized Variable 457
Unchecked Return Value 252 NULL Pointer Dereference 476

at Oracle. To achieve that, we use the BegBunch dataset [9]
and the National Vulnerability Database (NVD) [10].

A. Impact and Exploitability

To estimate the severity of a vulnerability in RBR, we use
the NVD [10] impact and exploitability scores of Common
Vulnerabilities and Exposures (CVEs). The higher an impact
score is, the more dangerous the exploit is. The higher the
exploitability score of a vulnerability is, the easier it is to
exploit. Given a CWE type v, we compute ra(v) as the mean
value of impact scores of all CVE instances if the CVE
instance is related to the CWE type v. Correspondingly, we
set rd(v) = −ra(v). However, our final utility model is not
zero-sum, because the costs of the attacker and the defender
differ. Similarly, we set ca(v) to be the mean value of the
exploitability score for all CVE instances related to the CWE
type v, which follows the idea of how MITRE calculates the
score of the top CWEs [15] each year.

B. Vulnerability Detection Probability

An important metric in evaluating a static analyzer is how
many true positives (i.e., vulnerabilities that are detected
successfully) it finds in a given codebase. We use the recall
value for each CWE vulnerability type v as the detection
probability of a static analyzer a. Formally,

p(a, v) =
TP

TP + FN
(16)

where FN is the number of vulnerabilities that the analyzer
fails to detect. For a schedule s, we say s detects a vul-
nerability instance b if any analyzer in s recognizes b as a
vulnerability. To calculate p(s, v) for a given schedule s and
vulnerability type v, we run all analyzers in s on the Accuracy
suite from the BegBunch dataset [9] and collect the number
of TPs and FNs. We then use Equation (16) as the detection
probability for schedule s.

Based on the 8 CWE types that we focus on, we consider
8 C/C++ potential static analyzers that a team at Oracle may
use: PARFAIT [16], Uno [17], Infer [18], Klee [19], Cp-
pcheck [20], Scan-build [21], Flawfinder [22], and Splint [23]
as the candidate analyzers to choose a schedule from. The
development team will not run all of the analyzers but only a
subset of them. Each analyzer may detect some or all CWEs.
At first glance, considering 8 analyzers may be a small set of
candidates. However, our discussions with the team at Oracle
have shown that, in practice, the team would not run more
than 2–3 deep static analyzers (e.g., taint trackers). Thus, we
evaluate schedules with budgets varying from b = 1 to b = 4.

4



C. Defender Costs

The cost of using a static analyzer depends on several
factors. Prior work has shown that runtime and false positive
rate are of paramount importance to developers [3]. If an
analyzer takes too long to terminate or generates too many
false alarms, it hinders the developer from properly using the
analysis results to locate and fix potential vulnerabilities. Even
worse, it makes the developer lose faith in the analyzer and
tend to ignore its vulnerability reports. To avoid bias towards
analyzers that do not output alarms (i.e., inherently have low
false positive rate), the cost of an analyzer cd(s) depends on
the accuracy rate, which we define as:

acc =

{
1− 2×Precision×Recall

Precision+Recall if Precision+Recall ̸= 0

1 otherwise ,
(17)

Precision =

{
TP

TP+FP if TP + FP ̸= 0

1 otherwise

Recall =

{
TP

TP+FN if TP + FN ̸= 0

1 otherwise

Accuracy indicates how reliable an analyzer is. The closer
the accuracy to 0, the better precision (i.e., reported vulner-
abilities are true vulnerabilities) and recall (i.e., unlikely to
miss a true vulnerability) the analysis has. Thus, an analyzer
with a lower accuracy has a lower cost. Using accuracy
instead of FP rate enables us to measure the performance of
an analyzer comprehensively since we are neither favouring
analyzers that are too cautious to report any non-superficial
vulnerabilities, nor analyzers that are too careless to report all
program locations as vulnerabilities.

To evaluate the accuracy of an analyzer on a specific CWE
type, we run all 8 analyzers on BegBunch and triage the report
related to the desired CWE type into 3 categories:

• True Positive: real vulnerability reported by the analyzer.
• False Positive: vulnerability reported by the analyzer that

does not match a real vulnerability.
• False Negative: real vulnerabilities that are not reported

by the analyzer.
For a schedule s, a vulnerability v is a True Positive (resp.
False Positive) if any analyzer in s recognizes v as a True
Positive (resp. False Positive); and we say v is a False Negative
if all of the analyzers in s recognizes v as a False Negative.

An analyzer is generally able to detect more than one type
of vulnerability. In our evaluation, we take the mean value of
accuracy for all CWE types (Table I) that can be detected by an
analyzer as the analyzer’s accuracy. However, if the defender
needs to further differentiate between CWE types, they can
weight the accuracy for detecting vulnerabilities of different
CWE types to reflect their detection priorities.

In addition to accuracy, an analyzer cost also depends on
the runtime of each analyzer, which we collected during the

same evaluation on the BegBunch dataset. Thus, we define the
cost of an analyzer as:

cd = e1 × runtime + e2 × accuracy (18)

where e1 + e2 = 1 and ∀i.ei ∈ [0, 1]. To best reflect
the relationship between each component of the cost for an
analyzer, we scale all values to the range [0, 10]. Specifically,
we use a linear function to scale the accuracy and a verified
sigmoid function (σ(x) = 20

1+e−x/10 −10) to scale the runtime
since there is no upper bound.

D. Configuration Cost

From a project manager’s view, configuring a static analyzer
into the workflow is a challenging task. For example, practical
experience at Oracle indicated that it is almost impossible
to deploy some analyzers without adding a vast amount of
annotations to the source code.

While it is easy to measure the runtime of an analyzer
with system tools, as we did for our evaluation, it is hard
to quantify the configuration cost for an analyzer because
there is no standard way to configure all analyzers. Thus, we
estimate the configuration cost based on the content of the
official discussion forums for each analyzer. Specifically, we
manually count the proportion of posts related to the analyzer
configuration and installation from the forum. The higher that
proportion is, the larger the configuration cost.

E. Reward-Cost Tradeoff and Configuration Tradeoff

Since we parameterize RBR using several sources of in-
formation, there is no clear method of comparing one unit
of reward against one unit of cost. For example, the attacker’s
costs are given by the NVD exploitability score and its rewards
are given by NVD impact score, and we have no knowledge
of how an attacker may weigh the relative importance of each
score. To address this problem, RBR defines the parameters
γa and γd in Equations (5) and (6). These parameters represent
the trade-off between costs and rewards for the attacker and
defender. A relatively low value of γ corresponds to a player
who values a unit of reward more than a unit of cost. A high
value is for a player who is deeply concerned about costs.
These parameters may be tuned to represent different types
of players. For example, if γa = 0, then the attacker’s utility
does not account for costs, analogous to an attacker with more
resources than needed for any attack. On the other hand, a
large γa stands for a cost-cautious attacker.

We have also introduced a coefficient α to represent how
a company values the configuration cost. A larger α means
the company cannot afford the cost of configuring many
analyzers, while a small α means that the company has enough
resources to configure more analyzers to potentially find more
vulnerabilities. In our evaluation, we fix the value of γa, γd,
and α all equal to 0.1.
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Fig. 1: Comparing RBR to various baseline strategies.

V. EVALUATION

We evaluate RBR through the following research questions:
• RQ1: How does RBR compare to a set of baseline

strategies?
• RQ2: How does changing the coefficients for e1, e2, and
α affect the utility for the defender?

• RQ3: How does RBR behave in a real-world scenario
compared to the current defence strategy used at Oracle?

For RQ1 and RQ2, we ran our experiments on a machine
with Intel Core I7-7700HQ 2.8 GHz 4-core processor, 32 GB
RAM, running Ubuntu 20.04. For RQ3, we used a machine
with Intel Xeon E5-2690 2.9 GHz processor, 16 GB RAM,
running Oracle Linux 8. To solve the MILP, we used Z3
4.8.15 [24].

A. Comparison to Baseline Strategies (RQ1)

We compare RBR against the following baseline strategies
in terms of their optimal defender utilities:

• Uniform Randomization (UR): the defender uniformly
randomizes over all schedules in S.

• Best Average Detection Rate (BADR): the defender al-
ways runs the schedule s′ with the best average detection
rate of specific vulnerability types.

s′ ∈ argmax
s∈S

1

|V |
∑
v∈V

p(s detects v) (19)

• Randomized Best Average Detection Rate (RBADR):
an extension of BADR that uniformly randomizes over
the two strategies with highest average detection rates.

• Highest Expected Utility (HEU): the defender chooses
a schedule s′ with the highest expected utility, calculated
by taking the expectation of utility over the likelihood
exploited vulnerabilities, where the probability of each
CWE is taken from the uniform distribution.

s′ ∈ argmax
s∈S

∑
v∈V

ud(s, v) · p(v), (20)

• Randomized Highest Expected Utility (RHEU): an
extension of HEU that applies uniform randomization
over the two strategies with the highest expected utilities.

TABLE II: The schedules and probabilities for RBR.

RBR

Budget Utility Schedule Probability

1 -5.196 PARFAIT 0.792
FLAWFINDER 0.208

2 -5.165 PARFAIT, CPPCHECK 0.775
FLAWFINDER, CPPCHECK 0.225

3 -5.176 PARFAIT, CPPCHECK, FLAWFINDER 1

4 -5.218 PARFAIT, FLAWFINDER, UNO, CPPCHECK 1

TABLE III: The schedules for DBR.

DBR

Budget Utility Schedule

1 -6.014 UNO

2 -5.218 PARFAIT, FLAWFINDER

3 -5.176 PARFAIT, CPPCHECK, FLAWFINDER

4 -5.218 PARFAIT, FLAWFINDER, UNO, CPPCHECK

• Deterministic Best Response (DBR): the defender best
responds to the attacker by choosing a single schedule s∗.
DBR is a restricted case of RBR, where the defender
assigns probability 1 to s∗ and 0 to all other schedules.

For all strategies, the defender has a negative expected
utility because they cannot win this game; they only seek
to minimize their losses. Therefore, the closer to 0 that a
strategy’s utility is, the better it performs.

Figure 1 shows that, regardless of the budget, RBR out-
performs all other strategies; except when budget equals 3
and 4, where RBR and DBR output the same solution. The
difference between RBR and DBR shows the benefit that the
defender realizes through randomization. This is because a
DBR is more easily exploited by the attacker than an RBR. For
the other strategies, the defender either does not consider the
actions of the attacker or resource usage, earning them a lower
utility. To further illustrate the differences between RBR and
DBR, Table II and Table III show the solutions suggested by
RBR and DBR along with their expected utilities for various
budgets. The tables show that both RBR and DBR eliminate
the use of 4 analyzers: KLEE, INFER, SPLINT, SCAN-BUILD.
To better understand the reasons behind this elimination, we
examined the analysis runtime, accuracy, and configuration
overhead of each analyzer. Table IV shows the measured costs;
the smaller the value, the lower the cost of running its corre-
sponding analyzer. The table shows that SCAN-BUILD, KLEE,
and INFER have relatively high runtime scores. Moreover,
KLEE times out on several benchmarks because it depends
on symbolic execution techniques. Additionally, SPLINT is
too expensive to configure, because it requires modifying the
code to add annotations, which is a tremendous overhead for
developers.
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TABLE IV: Each cost component of running an analyzer.
Smaller values indicate better performance.

Analyzer Runtime Accuracy Configuration

PARFAIT 1.94 2.62 3.80

UNO 0.46 4.13 0.50

SPLINT 0.15 2.81 9.50

SCAN-BUILD 9.04 3.33 3.36

KLEE 9.02 1.41 5.37

INFER 8.73 4.80 8.85

FLAWFINDER 0.58 7.96 0.50

CPPCHECK 1.33 4.41 1.00

RQ1: RBR outperforms all other strategies, showing
that randomization and considering the actions of the
attacker increase the defender’s optimal utility.

B. Sensitivity Analysis (RQ2)

In RBR, e1, e2, and α decide how much the MILP values
runtime, accuracy, and configuration cost of an analyzer. The
higher the coefficient is, the more it values the corresponding
attribute. To measure the effect of varying e1, e2, and α on
computing an optimal defender utility, we increase the value
of each coefficient separately while keeping the other two
parameters equal for budgets 1–4.

Figure 2 shows the change of the optimal defender util-
ity with e1, e2 under different budgets while maintaining
e1+e2 = 1. Since we are solving an MILP, the solution stays
the same unless there is a change in the slope of the curve
in each plot in Figure 2. The figure shows that changing any
coefficient does not change the value of the optimal defender
utility drastically. For budgets 1–4, the defender expected
utility has a maximum increase of 0.3 and stays in the range
[−5.35,−5] when we increase e1 from 0 to 1 with a stride
of 0.1. Thus, the solution suggested by RBR is insensitive to
the value of e1 and e2 since the set of the choice analyzers
remains the same.

On the other hand, varying α has an effect on the defender’s
expected utility. Figure 3 shows that varying α from 0 to 1
decreases the utility by a maximum value of -6 while also
changing the chosen set of analyzers. The solution changes
2–3 times as we increase α from 0 to 1. If we increase the
value of α, RBR is more likely to assign a higher probability
to analyzers that have smaller configuration cost. The results
verify that α controls the tradeoff between the vulnerability
coverage and the cost of configuring more analyzers efficiently.

RQ2: RBR is sensitive to α but insensitive to e1 and
e2. Increasing α makes RBR bias to analyzers that are
easy to configure.

Fig. 2: The change in the optimal defender utility with varying
e1 and e2. For all runs, γa = γd = 0.1.

Fig. 3: The change in the optimal defender utility with varying
α. For all runs, γa = γd = 0.1.

C. Real-World Scenario within Oracle (RQ3)

To show that RBR provides useful guidance on choosing
analyzers for real-world programs, we use its solution to
detect vulnerabilities in one of the codebases (A) at Oracle,
which has over one million lines of C code. To compare
against the vulnerability reports that were manually verified
by the Oracle development team, we use an older version of
A that was in use during the time when these reports were
generated. These vulnerability reports are collected based on
an in-house analyzer developed by Oracle. In other words, the
defence strategy of Oracle is running the in-house analyzer
with probability 1, similar to DBR of budget 1. However,
these vulnerability reports are not necessarily the full set
of all vulnerabilities in the source code. As we will show
later, running other analyzers lead to discovering more true
positives. For this case study, the objective of the next code
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patch is to fix vulnerabilities of types that Table I lists. Thus,
if the analyzers suggested by RBR detect more vulnerabilities
of these 8 types than the baseline strategy, then RBR provides
a better selection strategy.

From Table II, we choose our defence strategy when the
budget = 2, because that budget yields the highest defence
utility. The defence strategy is a probability distribution over
the power set of analyzers. In other words, we will randomly
choose a group of analyzers among (FLAWFINDER + CP-
PCHECK) and (PARFAIT + CPPCHECK) with their associated
probabilities as the final solution. However, we show the
results for all schedules to avoid favouring any specific one.

To compare the number of vulnerabilities detected by our
defence strategy to the baseline strategy, we ran all analyzers
in our defence strategy and manually verify if the vulnerability
reports are true positives. Table V shows the number of
true positives of each schedule along with the number of
vulnerabilities found by running the baseline strategy. The last
column in the table represents the number of vulnerability
reports that we gathered by running the baseline strategy.
These are true positives found by the defence strategy and
confirmed by the development team at Oracle. Thus, we
could verify the performance of the RBR defence strategy
by comparing the average number of true positives between
the RBR defence strategy with the baseline strategy.

Across all CWEs, the schedule (PARFAIT, CPPCHECK) finds
the highest total number of true positives (282) than the other
schedule (FLAWFINDER, CPPCHECK), which detects 238 true
positives; both are still more than the baseline strategy (210).
Since both schedules detect more true positives, randomly
choosing one of them also leads to detecting more vulnera-
bilities. For each CWE type, each schedule detects a different
set of true positives. For example, schedule (FLAWFINDER,
CPPCHECK) finds fewer true positives than the baseline for
CWE-120, CWE-401, CWE-416, and CWE-457. After man-
ually triaging the true positives, we have confirmed that the
main reason is both analyzers in that schedule perform poorly
for inter-procedural issues. For CWE-476, all schedules detect
more true positives than the baseline due to using CPPCHECK.
In fact, CPPCHECK singlehandedly finds all 208 true positives.
Thus, the schedule (PARFAIT, CPPCHECK) leads to the largest
overall number of detected true positives.

Since Oracle would only run one schedule at a time from the
computed RBR stategy, we have also calculated the weighted
average for each CWE type. The penultimate column in
Table V shows the number of true positives that will be
detected in the long run when Oracle follow the RBR strategy.
Overall, RBR outperforms the baseline strategy by detecting
more true positives. Thus, our RBR strategy can be used in
real word programs to select the best set of analyzers.

RQ3: Our experience of using RBR at Oracle shows
that RBR suggests a set of analyzers that detect more
true positives than the existing strategy that Oracle
has, while considering resource usage and the attacker
choices.

VI. LIMITATIONS

Our approach to estimating the parameters for RBR has a
few limitations.

a) Limited bug instances for a CWE type: Although Beg-
Bunch contains over 2,300 programs, most of the benchmarks
only contain bugs of certain types. Thus, for some CWE
types that we considered in our evaluation, fewer than 20 bug
instances are used in estimating the precision and recall of an
analyzer. This is a potential cause of inaccurate estimation.

b) Limited CVE availability: A similar issue also appears
in the NVD dataset. For certain types of CWE bugs in our
evaluation, the NVD dataset for the most recent 10 years
may only contains fewer than 10 bug instances exploited and
reported in existing software.

c) Classifying a CWE type: Not all analyzers output
a detailed, user-friendly results. Most would only output a
description and a location for each found bug. For these ana-
lyzers, we have to manually collate the output bug information
to a CWE bug type. However, it is sometimes hard to exactly
map a description to the CWE type as some analyzers may
output the same description for bugs of different CWE types.
But only about 5% of bug reports fall into this category, thus
we believe that this issue would only slightly degrade the
quality of estimation.

VII. RELATED WORK

A. Security Games

Over the last decade, Stackelberg security games have been
applied to a wide variety of security domains. [25] provide an
excellent overview of the field. In this section, we highlight
two particularly relevant works.

Our work is inspired by the work of [8], which employs the
use of Stackelberg security games to assign security resources
in the LAX airport. Their work innovates by considering the
different values for defense targets. While our work incorpo-
rates many ideas from their paper, we also present several
improvements to their model. The first, and most important
difference is that they apply their model for security in a
traditional, physical setting, whereas our approach is for a
more abstract defense. Attacks in the domain of bug detection
are much lower risk for an attacker to make compared to terror
attacks carried out in-person. Therefore, our domain, naturally,
has a higher ratio of attackers to defenders. Additionally, while
their model considers the several factors when judging the
value of attacking certain targets, it does not consider the
difficulty of carrying out an attack on the target, which our
model incorporates.

To model the assignment of transit police patrol schedul-
ing, [26] applied security problems on the domain of graph
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TABLE V: True positives for RBR strategy. RBR suggests using one of the schedules with the associated probabilities. Each
line shows the number of true positives detected by the possibly used schedule. The last column shows the number of true
positives detected by the baseline strategy at Oracle.

Schedule of RBR Strategy (Probability) Baseline Strategy

Vulnerability PARFAIT + CPPCHECK (0.775) FLAWFINDER + CPPCHECK (0.225) Weighted Average

CWE-78 0 0 0 0

CWE-120 22 16 20 18

CWE-190 0 0 0 0

CWE-252 0 0 0 0

CWE-401 5 1 4 5

CWE-416 1 0 1 1

CWE-457 46 13 38 32

CWE-476 208 208 208 154

Sum 282 238 272 210

patrolling. Like our own work, but unlike the work of [8]
which considers terrorist attacks, [26] model a domain in
which attacks are relatively low-cost, and thus may frequently
succeed. Since attackers are commuters with routines, they
plausibly will only change their decision of whether or not
to buy a ticket, whereas attackers in our model may always
change the type of their attack.

B. Game Theory for Cybersecurity

Game theory and security games have historically been
used to optimize cybersecurity defenses. In our discussion, we
will focus more on the application of game theory to digital
defenses than how to more effectively detect new malware.

Zaffarano et al. [27] present a system for designing metrics
for modelling non-static software defense. Our work expands
on their model by adding costs for attackers and defenders,
making the game non-zero sum. This change allows our
model to avoid computing sub-optimal strategies as a result
of ignoring these costs.

Chung et al. [28] criticize the use of game theoretic ap-
proaches to malware detection, including vulnerability to novel
attacks, and a lack of a true measure of costs and rewards.
The authors present a game theoretic approach for automated
responses to network breaches, allowing systems to defend
themselves without the need for human administrator action.
Their approach specializes in domains where knowledge of
attacks and their payoffs is limited, which is not the case in
our work.

Wang et al. [29] present a many-player game theoretic
approach to security in mobile ad-hoc networks (MANETs).
Their model allows normal users in MANETs to make dis-
tributed security defense decisions, allowing the MANET to
be more resilient to being compromised, while also minimizing
the resources required to do so. Their work uses system
resource constraints as a budget, which is similar to our use
of budgets as a constraining factor.

Game theory has also been employed in “honeypotting,”
where vulnerable “bait” systems are distributed to hide real

ones, to waste attacker time, warn against incoming attacks,
and understand new vulnerability exploits. [30] uses game
theory to optimally decide how vulnerable to make the bait
systems, as well as how many to use, to maximize their
effectiveness. Their later work [31] considers attackers who
use probes to detect if a system is real, and uses attack
graphs to better model an attacker’s knowledge of a system.
Attack probes explain why attackers can be best responding
(by having perfect information) in our model, as an attacker
is able to repeatedly probe our defenses to see which attacks
are more likely to succeed.

VIII. CONCLUSION

The interaction between a company and malicious users
may be viewed as a game. The company aims to publish its
software in the least exploitable way while malicious users try
to do as much damage as possible by exploiting vulnerabilities
in the software. To detect and eventually fix the vulnerabilities
in the source code, the company needs to run static program
analyzers before releasing their code. There are plenty of
static program analyzers for different languages and each with
a different vulnerability coverage. Even though a company
may have a large infrastructure that enables them to run a
large set of analyzers that cover most vulnerabilities, it is
impossible to provide full coverage due to the prohibitive cost
of deploying a static analyzer. An immediate question is how
to choose the set of analyzers to run. Using a deterministic
subset of available analyzers would also leave a deterministic
gap between vulnerability types. To prevent the attacker from
estimating the chosen set of analyzers to find vulnerabilities
in the source code, the company needs to randomly choose
the set of analyzers to run.

In our work, we have presented RBR, a method for com-
puting an optimal randomization over available static program
analyzers by modelling the interaction between the software
publisher and malicious users who try to exploit vulnerabilities
in the software. In RBR, the defender’s costs depend on a
few objective factors (e.g., accuracy for different tools on
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different attacks) and subjective factors (e.g., relative costs of
different vulnerabilities being exploited). We classify vulner-
abilities according to their CWE categories and estimate the
objective factors from the National Vulnerability Dataset [10].
However, the RBR parameters can and should be customized
for different users because there could be a disparity in
how organizations define the value of a vulnerability. Thus,
users should choose the parameters that fit their needs best
before using RBR. Our empirical evaluation shows that RBR
outperforms all other baseline strategies with respect to the
defender utility. We also conduct a sensitivity analysis to show
how varying the user-defined coefficient will affect the model
output. Finally, we have performed a case study of our method
with one of the large systems with more than a million lines of
code from Oracle, which shows how RBR may be deployed
in a real-world scenario.
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