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Abstract— Automating the device selection in heterogeneous
computing platforms requires the modelling of performance both
on CPUs and on accelerators. This work argues for the use
of a hybrid analytical performance modelling approach is a
practical way to build fast and efficient methods to select an
appropriate target for a given computation kernel. The target
selection problem has been addressed in the literature, however
there has been a strong emphasis on building empirical models
with machine learning techniques. We argue that the applicability
of such solutions is often limited in production systems. This
paper focus on the issue of building a selector to decide if an
OpenMP loop nest should be executed in a CPU or in a GPU.
To this end, it offers a comprehensive comparison evaluation
of the difference in GPU kernel performance on devices of
multiple generations of architectures. The idea is to underscore
the need for accurate analytical performance models and to
provide insights in the evolution of GPU accelerators. This work
also highlights a drawback of existing approaches to modelling
GPU performance — accurate modelling of memory coalescing
characteristics. To that end, we examine a novel application
of an inter-thread difference analysis that can further improve
analytical models. Finally, this work presents an initial study
of an Open Multi-Processing (OpenMP) runtime framework for
target-offloading target selection.

Keywords-Heterogeneous Computing, OpenMP, GPGPU, MIC,
Static Analysis, Hybrid Analysis, Performance Model

I. INTRODUCTION

High-level programming models such as Open Multi-
Processing (OpenMP) [1] and OpenACC [2] provide the
means to write architecture-agnostic accelerator code. Target-
agnostic programming abstracts the details of accelerator
architecture from the developer and makes it the preroga-
tive of the compiler/runtime to handle architecture-specific
code generation, optimization, and parameter tuning, within
the limits allowed by the programming model. Furthermore,
programming models like OpenMP are shifting towards be-
ing more descriptive, rather than prescriptive, with the next
iteration of the standard poised to introduce constructs that
allow compilers most freedom yet on how to generate code
and where it should execute (e.g. #pragma concurrent).
While there is great value on tuning the source code of
applications for each specific accelerator architecture, that
is not the target of this research. The goal here is for a
compiler/runtime system to deliver the best performance in
a given architecture from an existing source code that cannot

be modified.
For some tasks, a split of the computation between CPU

and GPU execution leads to better performance. Valero-Lara
and Jansson implemented a mesh refinement over Lattice-
Boltzmann simulation algorithm by scheduling algorithm sub-
tasks across both the host CPU and the GPU, showing a
significant speedup over the initial GPU-only version [3].
Valero-Lara et al. have also shown that cooperative CPU-
GPU computation scheme, which allocates task to the platform
they are most suited for, beats a pure GPU implementation
of a classical cyclic reduction algorithm seen in fast finite
difference Poisson solvers [4].

Analytical performance modelling, a mature field of re-
search, has been the focus of work in tuning software systems
and guiding compiler optimizations [5], [6], [7]. Due to the
increasing prevalence of heterogeneous compute platforms,
architecture-specific performance modelling becomes a pro-
gressively important topic due to the role it has to play when
deploying target-agnostic applications [8], [9]. The ability to
automatically choose the processing unit which will execute
a given section of code can result in a critical performance
advantage. Existing analytical models strive to capture the
complexity of the architectures that they are modelling, and the
interplay between the levels of abstraction used to represent
said architectures.

A critically important challenge faced by analytical perfor-
mance predictors for CPU execution is to model the specifics
of CPU resource allocation and how it impacts instruction
latencies. To improve the accuracy of CPU instruction-mix
latency modelling, we propose an elegant solution that lever-
ages LLVM-MCA - a predictor that uses the compiler’s built-in
instruction scheduling algorithms [10]. The tool is integrated
into an existing analytical model in order to increase its
accuracy. In the realm of GPU performance models, Hong’s
performance model is a seminal approach to runtime predic-
tion [11]. One of the model’s biggest losses in abstraction
is in characterizing the coalescing characteristics of memory
accesses - a critical factor for GPU code performance. We
introduce an improvement to the model that applies IPDA, a
hybrid symbolic analysis framework that captures the precise
coalescing characteristics of OpenMP parallel loops set for
GPU code-generation, in order to generate better estimates of
the GPU’s memory-warp parallelism.
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This paper makes progress toward addressing the following
research problem: How to construct runtime target device
selection heuristics, what are the biggest challenges involved,
and how to make such heuristics suitable for production
environments? Modelling execution of compute kernels on a
variety of accelerator architectures is a notoriously challenging
task, we highlight this by examining cross-generational GPU
architectural differences that have a significant impact on
the outcome of deciding whether to execute a kernel on an
accelerator target or to keep execution on the host. We study
the use of analytical performance modelling to address this
research question. Machine-Learning-based algorithms may
achieve high degrees of accuracy, but may also suffer from
some drawbacks that limit their applications. For instance,
dependence on runtime parameters to make an informed deci-
sion requires that the learned model be evaluated immediately
prior to kernel launch. For some ML models this evaluation
results in significant overhead. Moreover, a classical problem
of learning approaches — their black box nature — is a
serious limitation in compiler/runtime systems due to its
effects on understandability, reproducibility and susceptibility
to non-linear, and sometimes non-contiguous, relations be-
tween model parameters and performance. This paper studies
a decision framework for profitability analysis of offloading
GPU versions of OpenMP parallel loops that indicates that
combining static analysis and runtime parameters is a suitable
approach to make such decisions.

II. HETEROGENEOUS PLATFORMS, PROGRAMMING
MODELS, AND THE NEED FOR PERFORMANCE ANALYSIS

CPU

CoreCore

CoreCore

Main Memory

GPU

GPU Memory

FPGA

FPGA Main Memory

Figure 1: Example topology of a heterogeneous computing
environment

A. Heterogeneous Computing Platforms

A typical heterogeneous system consists of a host machine
that operates using an ordinary CPU and contains main mem-
ory modules. Attached to the host machine, via a data-transfer
bus, are one or more accelerator devices. An example topology
of a host computer with two accelerator devices attached
is shown in Figure 1. The host — a general-purpose CPU
machine — is responsible for the overall system’s operation,
memory management and control of execution among attached
devices. During execution of a program that contains an
accelerator kernel — a piece of computation specified to be

offloaded to an accelerator — the host machine schedules
execution of the kernel on a given computing device and per-
forms the necessary data transfers to and from the computing
device. A fallback scenario may occur in which the required
accelerator device is unavailable or busy, in which case the
host may instead schedule execution of the accelerator kernel
on the host machine’s CPU. If the programming model allows
it, the host may elect to schedule kernel execution either on
the host itself or any of the available accelerators.

B. OpenMP and Accelerator Programming

OpenMP is a prescriptive directive-based programming
model designed for both shared memory multiprocessor pro-
gramming using C, C++, and FORTRAN. It is made up of a
collection of pragma directives for controlling execution of a
parallel application, and library routines for interfacing with
the runtime environment.

OpenMP 4.0 introduced the capability for the programmer
to specify target segments — blocks of code to be executed
on an accelerator device. Data is transferred to the device’s
memory environment for processing. This transfer may occur
automatically in case of memory-coherent accelerators or
through insertion of explicit data-transferring instructions by a
compiler. Code generation for OpenMP constructs enclosed in
the target region is specific to the accelerator architecture.
For example, consider a case of a simple parallel loop. When
generating GPU-executable version of the loop, the compiler
is likely to transform it into a data-parallel Single Instruction,
Multiple Thread (SIMT) form. If an FPGA device is the
compilation target, better performance is achieved through
parallelism obtained by pipelining operations of the loop. For a
many-core accelerator or a CPU-bound target, a vector SIMD
version of the loop would achieve better performance. In an
environment that contains multiple heterogeneous computing
devices, the compiler may generate multiple versions of the
same block of code: each one specialized for a given com-
puting device. OpenMP may not yield hand-tuned CUDA
or pthread performance. However, it is popular in scientific
computing and thus worth studying. When studying OpenMP,
it only makes sense to use a single-source program that targets
various architectures with the goal of performance-portability
and target agnosticism. Hand-tuning programs for specific
architecture contradicts this philosophy.

At execution time, one of the versions of generated kernels
is selected for execution on its device. This selection can be
based on an environment variable value or on a programmer-
specified conditional expression. An important question is
whether programming models allow for the compiler/runtime
to select a computing device. In the OpenMP 4.x standard the
pragma that specifies that a portion of the program is to be
offloaded to a device is prescriptive — the computing system
has no choice in the matter. However, the upcoming OpenMP 5
programming model will include a loop directive that allows
the programmer to specify that the computing system should
select the most appropriate computing device for a designated
portion of the program.
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Test GPU Offloading speedup on Host with 4 OMP Threads
P8+k80 4.01 5.12 0.67 5.24 28.07 24.26 6.68 14.70 5.43 0.79 5.23 0.53 0.11 0.13 5.42 0.71 3.44 0.09 1.68 3.21 3.58 5.55 0.67 3.26 2.95
P9+v100 1.54 23.26 36.67 186.59 183.67 187.78 182.88 180.95 19.05 1.36 25.36 1.15 0.39 0.53 25.19 2.19 12.97 0.06 3.94 16.93 71.67 19.43 1.36 4.54 12.10

Benchmark GPU Offloading speedup on Host with 4 OMP Threads
P8+k80 128.3 0.44 3.66 132.76 132.54 133.97 137.86 137.70 0.42 2.77 2.79 0.44 0.54 0.98 2.85 1.12 80.79 0.17 0.98 0.64 2.49 2.96 4.21 5.04 79.85
P8+v100 332.85 4.31 3.91 362.36 389.38 373.92 342.03 384.55 1.67 4.30 4.62 1.44 5.18 23.73 4.37 1.75 145.62 0.30 4.10 1.70 4.62 4.56 3.93 2.88 142.25

Test GPU Offloading speedup on Host with 160 OMP Threads
P8+k80 3.31 52.25 1.37 3.84 10.34 11.04 3.52 9.78 49.84 1.24 52.46 48.43 1.47 0.87 53.18 37.57 3.05 0.96 1.03 26.69 1.69 70.44 46.97 3.82 2.47
P9+v100 0.49 66.67 88.92 62.48 52.72 53.22 51.89 36.24 51.64 40.69 71.53 33.44 1.11 0.81 66.92 0.66 5.54 0.17 0.61 41.83 8.91 75.76 0.70 1.49 5.15

Benchmark GPU Offloading speedup on Host with 160 OMP Threads
P8+k80 35.45 0.89 2.53 31.64 34.75 32.37 45.54 42.82 0.80 2.90 2.98 0.23 0.35 0.47 2.21 0.72 64.94 0.30 0.21 0.79 0.42 2.45 3.21 2.33 65.09
P8+v100 32.07 1.44 1.54 36.26 32.18 29.39 35.55 34.43 1.15 1.59 2.61 0.17 1.48 4.41 2.52 0.44 41.088 0.18 0.43 0.91 0.20 1.66 1.18 0.73 35.03

Table I: Cross-Architectural Changes in GPU Offloading Speedup vs. host execution.

C. Symbolic Analysis of Parallel Loop Performance Charac-
teristics

In the context of high-level parallel programming models,
the Iteration Point Difference Analysis (IPDA) analysis frame-
work by Chikin et al. is able to statically determine thread
memory access stride of addressing expressions contained in
OpenMP parallel loops [12]. IPDA builds symbolic difference
expressions for inter-thread access strides and solves them in
order to determine access characteristics. For instance, the
analysis may ascertain that a memory access leads to the
generation of coalesced GPU code — adjacent threads access
adjacent memory locations — a characteristic paramount to
decide whether high-level parallel programs would map to a
GPU architecture in an efficient manner. Similarly, this result
may also inform the compiler whether the CPU version of the
same kernel would exhibit false-sharing among threads. Al-
ternatively, the IPDA analysis may establish that the memory-
access patterns of a kernel is favourable for exploitation of the
memory/cache hierarchy of a many-core computing device.

III. COMPARATIVE OFFLOADING PERFORMANCE CHANGE
ACROSS GPU GENERATIONS

Significant differences among generations of GPU archi-
tecture and bus interconnects mean that performance models
must be fine-tuned to the most intricate details of the platform
they aim to abstract. Table I displays our experimental mea-
surement of GPU offloading benefit for a series of Polybench
OpenMP kernels. The data was collected on two experimental
platforms: 1) POWER8 Host + Nvidia Tesla K80 (PCI-E) and
2) POWER9 Host + NVidia Tesla V100 (NVlink 2). The k80
and V100 host’s CPUs was clocked at 3000Mhz. All programs
were compiled using the IBM XL C/C++ compiler ver. 16.1.
Each kernel was evaluated in two execution modes, test and
benchmark, which differ only in the size of the program’s
input, being 1100 × 1100, and 9600 × 9600, respectively,
in most programs. Each benchmark was executed 10 times
and the average execution time of each kernel is used for
relative performance measurements. Kernel execution time
includes data transfer, but does not include the CUDA context
initialization that occurs on the first kernel launch by a given
program. The context creation is an overhead paid once by a

program that may repeatedly launch many kernels. Omitting
context initialization overhead presents a more typical case
of executing a kernel of computation and prevents the results
from being skewed on single-kernel benchmarks. In our exper-
iments, on Volta architecture, CUDA context initialization can
take upwards of 0.5 seconds. The recorded kernel execution
time is used to present speedup over the host execution time
of the same target region.

This data shows that a single GPU generation may sway
the offloading profitability decision in a drastic fashion. For
example, the 3DCONV kernel, in benchmark configuration is
a far better fit for execution on the CPU when the accelerator
choice is Kepler, with GPU offloading resulting in a slowdown
of of 2.1×. Yet, a Volta-equipped machine with an even
more capable CPU sees a dramatic speedup of 4.41× when
offloading the same computation to the GPU. The benchmark’s
computation kernel has low arithmetic intensity and is heavily
memory-bound; thus, benefiting greatly from the Volta’s card
memory bandwidth of 900GB/s, nearly double of the K80’s
peak 480GB/s. An example to the contrary is the CORR kernel,
which, in benchmark execution mode, is a good candidate
for acceleration for a POWER8 host, but should not be
offloaded on a POWER9 machine. This outcome holds despite
a more capable GPU on a faster interconnect. The four kernels
invoked by the benchmark contain sequential loops to be
executed by each parallel worker, which are well-suited for
SIMD vectorization and stand to benefit from POWER9’s
broader vector operation support and newly introduced VSX3
operations. In several other cases, despite the decision whether
a target region should be offloaded remaining the same, the
magnitude of change of speedup is colossal: ATAX2 kernel, in
a test run, compared to a 160-thread host, saw an offloading
speedup go from 1.24× on K80 to 40.69× on a V100 due
to a combination of faster data transfer rates and architectural
improvements.

A. Generational performance gaps require fine-tuned perfor-
mance estimates

Year-over-year advances in GPU generations are far out-
pacing development of CPU architecture. This pace of in-
novation coupled with rise in domain-specific applications
particularly well-suited to data-parallel computation mean that
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rapid evolution of accelerator architectures presents significant
challenges for both the compiler developers, and the research
community working on analytical performance modelling.
Both are chasing a moving target for code optimization and
analysis. Meanwhile, CPU platforms too are gaining new
features and ever-increasing facilities for vector computation,
adapting to the emerging workloads through application-
specific gadgets. The increasing importance of performance
models means that they need to capture greater amounts of
detail intricacies of their target architectures; meanwhile, a
growing variability across computing-device architecture types
calls for more domain-specific expertise on behalf of those
who attempt to model them, attracting more hardware experts
to the problem.

IV. A NEW HYBRID ANALYSIS FRAMEWORK FOR
DECIDING THE PROFITABILITY OF GPU OFFLOADING

Designing a compiler/runtime framework for a heteroge-
neous system that combines multiple processing units is a
challenging task. Such framework must amalgamate multiple
compilation backends that generate code for several targets
and bundle all versions into a single binary, a collection of
static analyses that extract relevant program features and char-
acteristics, a means to aggregate relevant dynamic information
at a program point prior to the relevant target section, a
runtime machine description query mechanism, and detailed
performance models that would inform the final offloading
selection decision. We describe a prototype of such a frame-
work and outline our approach in detail below, concluding the
description by providing some early results of applying the
framework on an OpenMP 4 microkernel benchmark suite —
Polybench.

#pragma omp target
#pragma omp parallel for
for (int k = 0; k < N; ++ k)

…

Compiler
(Static Analysis)

Program 
Attribute 
Database

GPU Kernel

FPGA Kernel

MIC Kernel

Executable

Program 
Launch

Target Region 
Encountered

Execution Runtime
(Dynamic Analysis)

Accelerator 
Selection

Dispatch Kernel 
to Selected 

Device

Machine 
Hardware 

Description 
Files

Figure 2: Example compilation and execution flow of an
offloading decision compiler/runtime framework.

Figure 2 shows the flow of program compilation and exe-
cution. The IBM XL Compiler is used for this prototype. This
compiler is a fully compliant implementation of the OpenMP
4.5 standard, capable of outlining target regions specified
in the program and translating them into GPU kernels. The
outlined region is duplicated prior to code-generation, and
a host-bound CPU-parallel version is generated to provide
a fallback mechanism in case a GPU device is unavailable.
After the creation of optimized versions of the compute kernel

for CPU and GPU, the compiler was augmented with a static
analysis that collects relevant program features that will form
skeletons of respective performance models. The evaluation of
these models may depend on values that cannot be known at
compilation time and that can be only discovered at runtime;
thus, statically constructed performance predictors are inher-
ently incomplete. During program execution, on reaching the
target region, the OpenMP runtime is invoked that initializes
the accelerator, queues up required data-transfers and launches
kernel execution. In our proposed method, the runtime is
augmented to instead extract the compiler-collected program
features from the program attribute database, and collect
runtime values that were missing from the static attributes. A
compiler transformation is required that supplies the OpenMP
runtime with dynamic information e.g. array sizes, loop trip
counts, arbitrary variable values that may be required to deter-
mine memory access stride/characteristics. The above data is
then used to generate predictions of potential performance gain
or loss of offloading the target region to the GPU. Finally,
based on the decision, either of the two generated versions of
the region code is invoked for execution.

The measurements were performed on an IBM POWER9
(AC922) machine with an Nvidia V100 GPU accelerator
connected via the NVlink 2 interface. The machine runs
RHEL Server 7.3 Operating System with CUDA version
V9.2.88. Due to the requirements placed on the LLVM’s
instruction scheduler by LLVM-MCA, POWER9 is the only
viable host architecture for our experiments at the time of
writing. OpenMP loops from the Polybench benchmark suite,
representing kernels of the more common high-level com-
putation operations is used to demonstrate the performance
model’s efficacy and applicability in deciding GPU offloading
profitability [13].

A. OpenMP CPU Performance Model

In this work, we leverage a compile-time cost model for
OpenMP proposed by Liao and Chapman [14]. The cost
model was originally built to augment existing performance
estimators of the OpenUH optimizing open-source OpenMP
compiler for C/C++ and Fortran programs [15]. OpenUH, in
turn, inherits its performance models largely from the Open64
loop nest optimizer infrastructure [16]. Liao’s adaptation of
the compile-time model implements extensions that account
for specifics of OpenMP work-sharing constructs, estimating
execution time of a parallel region as determined by the
execution time of the most time- consuming thread between
each pair of synchronization points. It also adds factors such
as scheduling overhead cycles and parallel loop chunk size
overheads. An appealing quality of this model is that values
of its parameters can be obtained from micro-benchmarks [17],
[18], [19]. Figure 4 contains the OpenMP model’s equations,
directly derived from the equations of the original OpenUH
parallel model. Our input kernels consist of strictly parallel
loop code and therefore other types of work-sharing constructs
described by the model are not exercised. Table II contains
various parameters used in the model. Some obtained from the
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Parallel Regionc = Forkc +

m∑
j=1

[maximum(Thread0 exe jc, ..., Threadn−1 exe jc)] + Joinc

Threadi exe jc = Worksharingc + Synchronizationc

Worksharingc = Parallel forc|Parallel sectionc|Singlec
Synchronizationc = Masterc|Criticalc|Barrierc|Atomicc|Flushc|Lockc

Parallel forc = Scheduletimes× (Schedulec + Loopchunkc +Orderedc +Reductionc)

Loop chunkc = Machinec per iter × Chunk size+ Cachec + Loop overheadc

Figure 3: Equations of Cost Model for OpenMP from [14].

POWER9 Processor User Manual [20]. The TLB miss penalty
is estimated using the TLB cost measurement tools included
in the Linux libhugetlbfs utility [21]. We used the EPCC
OpenMP micro-benchmark suite to measure scheduling and
synchronization overhead parameters of the execution model
on our hardware configuration [22].

1) Cycles Per Iteration of a Parallel Loop: A key metric
in Liao’s model is the Machinec per iter value, computed
based on cycles from FP and ALU units, processor memory
units, and issue units. Deep ties to the OpenUH compiler’s
inner instruction scheduler have made it challenging to obtain
this estimate in other contexts until recently. We forego the
original model’s calculations on processor resource, depen-
dency latency and register allocation cycle estimates in favour
of the LLVM Machine Code Analyzer (MCA). Spearheaded
by SONY, MCA is a performance analysis tool that uses the
LLVM infrastructure’s rich hardware backend ecosystem to
estimate the value of IPC for a given sequence of assembly in-
structions [23]. Both the compiler-instruction-scheduler-driven
analysis and the tool’s reporting style were heavily influenced
by Intel’s IACA tool [24]. The prediction for the number of
cycles required to execute an assembly sequence is based
on throughput and processor resource consumption as the
backend’s instruction scheduling model already specifies. The
backend module is used to emulate execution of machine code
sequence, while collecting a number of statistics which are
then presented as a report. The tool is able to handle the pres-
ence of long data dependency chains and other bottlenecks.
Due to its reliance on the instruction scheduler, it is limited
by the quality of the information present in the scheduler.
For example, common machine instruction schedulers omit
information on the number of retired instructions per cycle or
the processor’s number of read/write ports in the register file.
The tool’s known limitations also include a lack of a cache
hierarchy and memory type model.

In our experimental implementation, the tool is integrated
into the compilation process. The body of a parallel loop is
extracted and MCA is used to estimate the total number of
cycles required to execute it, yielding the number of cycles
spent by a thread participating in the parallel region to do
the work of one iteration — Machinec per iter — in the
performance model. The cache hierarchy model, missing from

the analysis tool, remains a limitation of the performance
model described here and is a primary future work direction
to improve the model’s accuracy.

CPU Frequency 3 Ghz
TLB Entries 1024
TLB Miss Penalty 14 Cycles
Loop overhead per iter 4 Cycles
Par. Schedule Overhead static 10154 Cycles
Synchronization Overhead 4000 Cycles
Parallel Startup 3000 Cycles

Table II: CPU processor/parallel parameters as used in the
execution model.

B. GPU Performance Model

An analytical model for a GPU architecture with Memory-
level and Thread-level parallelism awareness by Hong and
Kim is a seminal approach to performance prediction of
GPGPU kernels [11]. Our work implements their model
adapted to the Volta architecture by combining static-analysis-
driven feature gathering, dynamic kernel information acquired
on encountering a target region, and micro-benchmark ac-
quired hardware parameters for values not directly disclosed
by the vendor.

Static features: The IBM XL compiler generates a GPU
kernel version of encountered target regions. Static analyses
were integrated into the compilation process that gather pro-
gram features that are required by the model or are otherwise
important indicators of performance.

Instruction Loadout: A key factor in the performance model
is the amount of work performed by individual threads. For
example, if the amount of computation done by each thread
is very small, threads will finish execution very quickly and
will have to be queued to be scheduled for more work.
In this case, the overhead of scheduling more work to be
performed on a GPU for a very short amount of time will
be larger than the actual kernel computation, most likely
leading to poor performance. The model’s thread execution
cycle estimate is computed using the number of dynamic
instructions. We implement a simple static analysis to count
the number of IR instructions, which will be translated into
native micro-instructions later. Given the closed nature of
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the true GPU assembly ISA, this serves as a good estimate.
Our static analysis groups collected instructions into I/O and
compute categories. Control-flow constructs are abstracted in
an identical way across CPU and GPU analyses: all loops
are assumed to execute 128 iterations and all conditional
blocks of code are assumed to execute half of the time.
While the absolute prediction accuracy of this approach might
suffer, it should provide a reasonable point of comparison of
relative performance between the two platforms. Extending
this model to include profiling information to improve on
these assumptions could result in more accurate modelling
at the cost of adding the profiling step to the framework.
Profiling is sensitive to the ability of selecting a collection
of workloads that can reliably predict the runtime behaviour
of future workloads.

Nvidia Tesla V100
#SMs 84
Processor Cores 5376
Graphics Clock 1.312 Ghz
Processor Clock 1.53 Ghz
Memory Size 16 GB
Memory Bandwidth 900 GB/s
NVLink Transfer Rate 25 GB/s
Max Warps/SM 64
Max Threads/SM 2048
Issue Rage 1 cycle
Int Cmput Inst. Latency 4 cycles
Float Cmput Inst. Latency 8 cycles
Memory Access Latency 1029 cycles
Access on TLB Hit 375 cycles
Access on L2 Hit 193 cycles
Access on L1 Hit 28 cycles

Table III: GPU device/bus parameters as used in the execution
model.

Architectural Model Parameters: Figure III shows the Volta
architecture-specific values used by the model. These values
were gathered from either the CUDA API queries, vendor
manuals, and the excellent technical report by Zhe Jia who
obtained them in a deep examination of the architecture
through micro-benchmarking [25].

Runtime Model Parameters: The dynamic aspect of the
hybrid approach to performance estimation is essential because
only with runtime values the analytical models can be com-
plete. The sizes of kernel inputs prescribe the amount of data
that will be sent to the device and back over the interconnect.
The size of the iteration space of the original parallel loop
affects the number of parallel work-items in the resulting
data-parallel program and the grid geometry the runtime will
select. In order for the runtime to obtain these values, they
are stored into a Program Attribute Database which is queried
at execution time, indexed by the target region’s program and
location.

The original cycle count estimate from the Hong model
needed to be modified to adjust for one OpenMP specific
aspect of GPU code-generation. The #OMP Rep parameter,
highlighted in Figure 4, represents cases where the maximum
grid-geometry selected by the runtime does not result in a

sufficient number of threads to cover all parallel work items
— iterations of the original parallel loop. In that case, a thread
performs the work that comprises the body of the original
parallel loop, then, depending on the specified schedule of
the parallel loop, is assigned another iteration to execute,
either by advancing by a static chunk size, or querying
the OpenMP runtime. This parameter is set to account for
the number of distinct loop iterations a single thread will
execute if the number of loop iterations is higher than the
product of num thread blocks× threads per block. Each
iteration of a loop is a work item, or a ”repetition.” An
OpenMP parallel loop executes #OMP Rep. For instance,
in a statically scheduled parallel for loop with 1024
iterations executing in a kernel with 1 thread block of 128
threads, each thread executes 8 distinct iterations.

C. GPU Memory Access Pattern:
Improved Coalescing Detection

Given the different memory organizations in different ac-
celerators, the memory access pattern is an important input to
the performance model. Existing approaches to performance
modelling rely on either crude estimates or trace and profile-
driven analysis that requires an application to be executed
in order to determine its coalescing characteristics [26]. The
latter require the code to execute prior to the model being
able to generate an accurate prediction. This constitutes a key
shortcoming in a production runtime and is a key improvement
of this approach in relation to solutions that appear in related
work.

The accuracy of model parameters related to memory-
throughput can be improved by increasing the accuracy of
modelling the memory-coalescing characteristics of code. To
this end we build memory-access related parameters of the
model using the IPDA analysis framework [12]. Our prototype
deploys IPDA to construct a symbolic equation for the inter-
thread stride of each memory access. For example, suppose
the kernel in question contains the following parallel loop:
#pragma omp teams distribute parallel for

for (int a=0; a<max; a++) { A[max*a] =
... }

IPDA creates a symbolic expression for the inter-thread access
stride on the store to array A in line 3:

IPDt1(A[max * a])− IPDt0(A[max * a])

= [max]× 1− [max]× 0

= [max]

where a value contained in [] indicates a symbolic unknown.
Two possibilities exist in which the framework determines the
stride for this memory access:

1) the value of max is known at compile-time and IPDA
is able to statically determine, for example, whether or
not this kernel would result in coalesced GPU code.

2) the value of max is not known statically, but is known
at runtime, prior to kernel launch.

In our proposed compiler/runtime framework, the IPDA sym-
bolic expression of the access stride is stored in a Program
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If (MWP == N == CWP):

Exec Cycles = (Mem Cycles+ Comp Cycles+
Comp Cycles

#Mem Inst
× (MWP − 1))×#Rep×#OMP Rep

If (MWP > CWP):

Exec Cycles = (Mem Cycles× N

MWP
+

Comp Cycles

#Mem insts
× (MWP − 1))×#Rep×#OMP Rep

If (CWP > WWP):
Exec Cycles = (Mem L+ Comp cycles×N)×#Rep×#OMP Rep

Figure 4: Hong and Kim performance model program exection prediction [11]. Highlighted is the additional factor that describes
the side-effects of OpenMP thread-loop-iteration scheduling.

MWP = min(MWP Without BW,MWP peak BW,N)

BW per warp =
Freq × Load bytes per warp

Mem L

MW peak BW =
Mem Bandwidth

BW per warp×#ActiveSM

CWP full =
Mem Cycles+ Comp Cycles

Comp Cycles

CWP = MIN(CWP full,N)

Figure 5: Equations of Memory-Warp and Compute-Warp
Parallelism used in GPU execution Cost Model from [11].

Attribute Database (Figure 2). At the program point when
the target region is encountered, the unknown values are
extracted and used in the symbolic expression to compute the
actual stride, informing the analytical model with whether or
not the kernel’s accesses are coalesced and to what degree
(#Uncoal Mem inst and #Coal Mem inst values used
to compute Mem Cycles).

D. Putting It All Together

With both the CPU and GPU analytical performance models
defined in the OpenMP runtime system, the compiler must
alter the code generated for invoking an encountered target
region. Instead of simply launching GPU kernel execution, the
generated code configures the runtime to extract static features
of the generated versions of the region, feeds in the necessary
runtime values, and queries the results of performance models.
The model that results in the lowest predicted runtime is
chosen as the winner and execution is queued up on the
architecture the model describes, either the host CPU or GPU.
Because of the analytical nature of the model, generating a
prediction for either target is equivalent to solving an equation,
making decision time negligible in the context of the amount
of work already performed by the OpenMP runtime to initiate
parallel execution (either on GPU or Host). This goes in a stark
contrast to an approach that would employ machine learning
to perform model inference at runtime, a step that may, in fact,
take longer than the kernel execution itself [27].
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Figure 6: Actual versus predicted GPU offloading speedup for
test kernel execution mode versus a host using 4 threads.
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Figure 7: Actual versus predicted GPU offloading speedup
for benchmark kernel execution mode versus a host using 4
threads.

E. Evaluation
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This section presents some preliminary results based on an
early prototype of the hybrid decision analysis by evaluating
it on a collection of parallel OpenMP loops found in the
Polybench benchmark suite. These parallel loops represent
common atoms of computation found across a variety of
applications. 25 kernels from 12 different benchmarks are
executed: GEMM, MVT, 3MM, 2MM, ATAX, BICG, 2DCONV,
3DCONV, COVAR, GESUMMV, SYR2K, SYRK, and CORR. Each
benchmark in the suite has two modes of execution: test and
benchmark. The execution modes differ only in the size of
the program’s input, being 1100 × 1100, and 9600 × 9600,
respectively. We also include results for restricting the host
execution environment to just 4 threads to demonstrate both
the adaptability characteristics of the models, and a scenario
that resembles a more typical execution environment, when
compared to our experimental machine’s 20-core 8-SMT CPU
running at full capacity of 160 threads. Execution runtimes
were recorded as average kernel runtimes across 10 runs of
each benchmark. For a fair comparison of kernel execution
times across platforms, the GPU context initialization over-
head is omitted in order to demonstrate a generic case of
computation offloading in a running application, similarly to
the experiment described in Section III.

Figure 6 and Figure 7 demonstrate the true versus predicted
speedup of offloading the kernel execution to the GPU in
test and benchmark execution modes. The main sources of
prediction error are abstractions in the framework, some of
which can be reduced via more detailed models (e.g. a lack
of detailed memory hierarchy model), and some stemming
from incomplete information available to the predictor (e.g.
assuming that all loops inside kernels execute a fixed constant
number of iterations and that conditional branches are taken
with a 50% probability). The framework assumes that as long
as the same abstractions/heuristics are used across different
versions of the kernel, the relative error among versions of
the kernel is more important than errors in the prediction of
actual execution time.

When deploying the decision analysis framework to select
the execution target, overall benchmark suite execution time
is improved. When following the compiler’s default policy of
always offloading target regions to an accelerator, GPU
offloading of all kernels yields a geometric mean speedup of
10.2× and 2.9× versus a host using 160 CPU threads (Test
and Benchmark execution modes, respectively). Switching the
runtime to evaluate the relative performance of GPU offloading
through analytical modelling and only do so when predicted to
be profitable profitable results in a geomean speedup of 14.2×
and 3.7× on an otherwise identical configuration. Figure 8
shows the speedups achieved under both experimental setups.
Note that the speedup provided by the GPU is captured in most
cases, with few notable outliers: in the 160-thread Benchmark
execution model, the model’s decision on the convolution
kernels is incorrect, predicting a speedup of 0.913×, whereas
the true offloading speedup is 1.48×, in the 2D case. Discrep-
ancies in scenarios where the decision is a close one, such
as these, require further tuning of the model to increase its

accuracy. Improved representation of the memory hierarchy
impacts is a sure way to improve prediction efficacy for these
scenarios. The SYRK2 kernel in Test execution mode has the
performance model severely over-estimate the GPU execution
time relative the the CPU running at 160 threads, likely due to
over-accounting for the kernel’s poor coalescing characteristics
without taking the details of cache hierarchy into account.

While the OpenMP specification does not, currently, allow
compliant runtime systems to elect to not offload target
regions, there is a clear need to provide this ability to runtime
vendors. Even among highly-regular OpenMP parallel loops
— a construct best-suited for translation into data-parallel
code, there are computation patterns ill-suited to GPU ac-
celeration. While more difficult to model, common OpenMP
programs that utilize mixtures of construct types to express
parallelism alongside sequential code within target regions
are even more likely to see better performance on the host
fallback path. We demonstrate an early but successful attempt
at guiding compile/runtime system architecture to handle a
more descriptive programming model approach. The upcoming
OpenMP 5.0 standard is set to introduce new constructs that
allow implementors exactly this kind of freedom [28].

V. RELATED WORK

A. Performance Modelling of Parallel Programs

There exists much prior art in prediction and modelling
the performance of parallel programs on a given architecture.
Many approaches used to predict whether or not a program
will achieve good performance focus on simulation. Aversa et.
al. describes a simulation environment for hybrid distributed
heterogeneous applications that uses application traces to
analyze performance [29]. FASE is another framework for
performance prediction of heterogeneous HPC systems that
relies on constructing a simulation environment to evaluate
architectural options available to heterogeneous system de-
signers [30]. FASE’s focus is on overall performance of a
hybrid distributed and heterogeneous platform, rather than
application-specific or kernel-specific, which is the focus of the
hybrid analysis introduced in this paper. Snavely et al. at the
San Diego Supercomputing Center (SDSC) proposes mapping
a machine signature to an application profile to arrive at a
single processor performance prediction [31]. Snavely’s work
is focused on Simultaneous-Multi-Processing (SMP) platforms
and does not apply to accelerator devices or heterogeneous
computing platforms. Moreover, the SDSC work is also based
on profiles of previous executions of the applications. A large
amount of published literature focuses on performance mod-
elling, estimation and task-scheduling for distributed-memory
computing environments [32], [33], [34], [35]. This work
studies the use of hybrid performance modelling in the shared-
memory context of a single heterogeneous compute node.
Solutions to this problem compliment/augment distributed
work-sharing techniques.

A recent addition to the OpenMP standard is OMPT: a Tools
API for performance analysis [36]. OMPT affords a running
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Figure 8: Speedup achieved by always offloading to GPU versus offloading when determined profitable by the analytical hybrid
decision model. Benchmarks executed in Benchmark mode.

application API-level access to the OpenMP runtime event-
handling loop at a fine-grained per-thread level. Ghane et al.
combine OMPT with hardware performance tools to build a
predictor to identify false sharing behaviour among OpenMP
threads [37]. Unlike the approach proposed in this paper, these
tools need execution profiles. Profiling could compliment our
methodology by feeding the program attribute database with
more actionable data over time.

B. Machine Learning Techniques

Some machine-learning approaches apply multi-layer neural
networks trained on execution traces/samples of programs
to predict performance [38], [39]. Others apply clustering
and correlation analysis to tune parallel application parameter
space [40]. Wang et al. use neural networks to map parallelism
of CPU-parallel OpenMP programs to NUMA computing
clusters [41]. Despite the popularity of ML approaches in
research, industrial applications of such techniques for the
selection of computing device are hard to find. Industrial-
strength compilers must be able to not only produce repro-
ducible performance, but to do so in a transparent manner.
Also, the need for runtime-available parameters in ML solu-
tions leads to overhead for inference at runtime. For instance,
a simple matrix multiplication kernel makes little sense to
accelerate with a GPU when operating on 16 × 16 matrices,
but stands to benefit dramatically when matrices are very large.
An informed decision cannot be made without data available
only immediately prior to executing the computation which
can be offloaded. For instance, Lloyd et al. have successfully
implemented a machine-learning predictor for selecting the
GPU grid geometry to execute parallel OpenMP loops [27].
The predictor resulted in kernel execution times that are
superior to the default selection made by the compiler, yet the
time taken to generate the prediction generated an additional
overhead that overshadowed all benefits. In fact, the delay
imposed by the inference was often longer than the time that
it took to execute the computing kernel. ML-based approaches
have a role to play and may complement this study, however
practical considerations motivate this study of an analytical

approach that does not require prior profile runs or traces of the
application. Our proposed hybrid analytical model combines
static program analysis and dynamic program information to
make decisions about the computational device to execute a
kernel of computation in an efficient manner with negligible
overhead.

VI. DISCUSSION AND FUTURE WORK

OpenMP 4.0 standard greatly expands the functionality of
the programming model by introducing support for program-
ming heterogeneous computing systems. Newly written appli-
cations can take advantage of powerful accelerators like GPUs
by annotating the code with appropriate target constructs.
Meanwhile, a great wealth of existing OpenMP code can be
upgraded by users through fairly minor modifications and
additions of new directives to existing constructs. This work is
a first step in developing support for automatic offloading de-
cisions for loop nests in OpenMP 4.x applications. Automatic
offloading reduces the effort of porting legacy code to state-
of-the-art heterogeneous computing platforms to a simple act
of recompilation. A hybrid approach to a profitability analysis
of offloading parallel loops to a GPU is essential due to the
complexities of the trade-off made when sending both program
code and data to a GPU. This initial study provides encour-
aging results, indicating that significant performance gain is
possible through application of such analysis by choosing the
correct architecture present in the system for execution of
parallel code. Looking ahead, the upcoming OpenMP 5.0 will
introduce the concurrent loop construct directive, which
asks the compiler to make a decision on how to parallelize the
loop and, more importantly, where to execute it. In light of this
development, the work in profitability analysis of offloading
OpenMP code to GPUs becomes ever so prudent.
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