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Abstract

Major Field-Programmable Gate Array (FPGA) vendors, such as Intel and Xilinx, provide toolchains for compiling Open
Computing Language (OpenCL) to FPGAs. However, the separate host and device compilation approach advocated
by OpenCL hides compiler optimization opportunities that can dramatically improve FPGA performance. This paper
demonstrates the advantages of combined host and device compilation for OpenCL on FPGAs by presenting a series of
transformations that require inter-compiler communication. Further, because of extremely long FPGA synthesis times,
the overhead of recompiling the host code for each compilation of FPGA kernel code is relatively inexpensive. Our
transformations are integrated with the Intel FPGA SDK for OpenCL and are evaluated on a subset of the Rodinia
benchmark suite using an Altera Stratix V FPGA.

1 Introduction

Open Computing Language (OpenCL) [16] has emerged as
a prominent programming model for Field-Programmable
Gate Array (FPGA) . Intel and Xilinx release OpenCL
compiler toolchains that support hardware synthesis di-
rectly from OpenCL source [7, 8]. A major feature of
OpenCL is separate host and device compilation, allowing
OpenCL device vendors to specialize in device-code gener-
ation without concern for host implementations. This sep-
aration enforces strict Application Programming Interface
(API) boundaries between host and device implementa-
tions and prevents otherwise trivial compiler optimizations
and analyses. As a result, workarounds must be introduced
to recover lost performance. For example, Intel FPGA ex-
tends the OpenCL specification with channels that allow
kernel operations to be chained without needing to copy
back to memory. If a compiler had access to the combined
host and device code, chaining would be a trivial example
of loop fusion. However, with kernel definitions compiled
separately from invocations, programmers must implement
additional APIs to realize the benefits of chaining.
This paper builds on existing work by Zouhouri et al. [17]
that analyzes and improves the performance of GPU-
targeted OpenCL kernels on Intel FPGA devices using the
Intel FPGA SDK for OpenCL. This paper expands com-
piler analyses to include both host and device compilation
and introduces compiler transformations that benefit from
sharing analysis information between the host and device
compilation. In particular, we define three compiler trans-
formations that transform OpenCL kernels to more closely
match the best-practices published by Intel FPGA:
NDRange to Loop: Convert NDRange kernels, originally

intended to be repeatedly executed with a range of
thread identifiers (IDs), to a single body of code that
uses a loop induction variable to represent thread IDs.

Reduction-Dependency Elimination: Improve pipelin-
ing of reduction loops by storing partial sums in a shift
register to reduce loop-carried dependencies.

Restrict Parameters: Improve device-side alias analysis
by inspecting host code and by marking kernel param-
eters with the restrict attribute where applicable.

These transformations integrate with the Intel FPGA SDK
for OpenCL and are evaluated on the Rodinia benchmark
suite [6]. Rodinia benchmark OpenCL implementations
target GPU-like devices and, as such, are an appropriate
baseline for FPGA-specific transformations.

2 Programming FPGAs
FPGAs consist of arrays of interconnected programmable
logic blocks, which vary in complexity from simple lookup
tables to complete functional units. Typically, circuit con-
figuration is specified via a Hardware Description Lan-
guage (HDL) such as Verilog or VHDL. The HDL is then
compiled into a ‘bitstream’ - a configuration file that sets
the device’s logic blocks and interconnect switches into a
desired state. The compilation process consists of placing
circuits specified by user HDL code to the chip, while con-
sidering chip area usage and interconnect length/conges-
tion. The placed circuits then undergo routing, i.e., adding
wires to correctly connect the placed components. Arriv-
ing at an optimal circuit configuration is a known NP-hard
problem. Synthesis takes from hours to days.
To attract greater numbers of software developers to the
platform, the field of High-Level Synthesis (HLS) emerged
in the 1990s, experimenting with using higher levels of ab-
straction to synthesize hardware from a C-derived language
such as HardwareC or SystemC [12, 5]. HLS lets program-
mers focus on algorithmic functionality, and offloads the



Figure 1 SIMD versus Pipeline Parallelism. From [4].
Letters represent instructions, numbers represent data
elements.

hardware implementation to a hardware compiler. High-
level languages often allow functional testing to be done
by compiling to a CPU or GPU architecture, avoiding long
hardware synthesis times during the development process.
Various HLS approaches have been tried over the years
with limited success. Such systems generally use propri-
etary ANSI C-based languages, cutting out useful language
features and introducing extra constructs and pragmas, as
well as a set of guidelines on a rigid programming style
that must be followed for acceptable performance.
A recent push by Intel and Xilinx in the area of HLS
focuses on adopting the OpenCL programming model.
FPGA vendors are investing in the platform by provid-
ing end-to-end development toolchains such as Intel FPGA
SDK for OpenCL, and Xilinx SDAccel.

2.1 High-Level Synthesis of OpenCL
OpenCL is an open standard for parallel programming of
heterogeneous systems and a programming language spec-
ification [9]. General OpenCL program architecture con-
sists of a host device that controls one or multiple compute
devices by managing memory transfers and task distribu-
tion across devices. Compute devices are split into com-
pute units, which, in turn, contain individual processing
elements. OpenCL defines a Single Instruction, Multiple
Thread (SIMT) data-parallel model where many threads
execute the same instruction on many data items. In
OpenCL terminology this model is called NDRange (for
N-dimensional range). OpenCL also provides task-level
parallelism that exploits concurrency through stand-alone
task distribution across different compute units.
The main purpose of OpenCL is to enable portable use
of various hardware accelerators. While already popular
for GPU accelerators, recent adoption of the framework
as an HLS input language has opened new opportunities
to explore FPGA-specific compiler transformations. GPU-
targeted programs rarely achieve acceptable performance
when run unmodified on FPGAs [17], so new FPGA-
specific compiler techniques and insights are required.
In contrast to the data-parallel model favoured by GPUs,
FPGAs execute instructions in a pipelined fashion as
shown in Figure 1, similar to that of an assembly line. In
an FPGA, this means that a data processing unit (e.g., logic

blocks) take as input the output of a previous data process-
ing unit. These units can perform concurrent computation
because their work is independent from each other. The
reconfigurable fabric on FPGAs makes SIMT parallelism
a poor choice for applications. The pipeline parallelism
model improves utilization by requiring fewer copies of
each operator, while maintaining overall throughput [10].

2.2 Existing FPGA OpenCL Compilers
Czajkowski et al. present an LLVM-based OpenCL com-
piler prototype for Altera FPGAs, with a proof of concept
executing on the Stratix DE4 [7]. This compiler repre-
sents all basic blocks of the program as Control-Data Flow
Graphs (CDFG) with their own inputs and outputs as de-
termined through live-variable analysis. The CDFG allows
for efficient implementation of a module as a pipelined cir-
cuit, as opposed to finite state machine with a datapath - an
approach much better suited to the data-parallel OpenCL
model. This compiler implements the NDRange execu-
tion model by issuing individual work items into a kernel
pipeline, one after another. The task-parallelism execution
model, where the kernel code is written in a serial fashion,
is implemented in the compiler by attempting to pipeline
every loop in the code. The compiler also creates a wrap-
per for the generated kernel circuits to handle the standard
interfaces to the device-memory IO and does all necessary
bookkeeping to track kernel execution and to issue new
work-items into the pipeline. This work subsequently be-
came the Intel FPGA OpenCL compiler, upon which our
optimizations are based. Internally, the compiler consists
of an LLVM-based HLS component that compiles OpenCL
kernel code into Verilog, which is then synthesized using
standard Intel FPGA Quartus software. Intel FPGA also
provides an implementation of the OpenCL API to allow
host code to interface with devices: launch kernels, man-
age memory transfers, etc. While the prototype described
here uses the Intel FPGA OpenCL toolchain targeting a
Stratix V FPGA, the general concepts are applicable to re-
configurable architectures of other FPGA vendors.
As of 2015, Xilinx SDAccel development environment
provides a HLS toolchain that is fully compliant with
OpenCL 1.0. SDAccel is a closed-source application and
little is known about its inner workings. We can infer from
the user guide that the data-parallel NDRange execution
model in this compiler is emulated through generation of a
3-dimensional loop-nest that iterates over the work-group
and work-item dimensions [2]. Loop pipelining is one
of the essential optimizations attempted by SDAccel [8].
SDAccel would also provide a good platform to prototype
the analyses and transformations.

2.3 Manually Optimized OpenCL
Writing OpenCL code that delivers good performance on
FPGAs is an open problem. Intel publishes a best-practices
guide [1] detailing strategies and patterns that the Intel
FPGA OpenCL compiler can efficiently execute. These
patterns served as inspiration for the transformations pre-
sented in this paper. Zohouri et al. [17] performed manual
optimizations on six Rodinia OpenCL benchmarks com-



piled with the Intel FPGA OpenCL compiler. After these
optimizations, FPGAs could be competitive with GPUs
on performance with dramatically better power efficiency.
The effectiveness of these transformations inspired our
compiler transformations.

2.4 Combined Host/Device Compilation
Lee et al. [13] developed an OpenACC-to-FPGA com-
piler framework, that converts OpenACC programs into
OpenCL using the open-source OpenARC compiler, and
then uses the Intel FPGA OpenCL compiler for HLS. The
approach benefits from the fact that user-level source code
contains device kernel code embedded into the host con-
trol code. This source code is annotated with pragmas that
specify the code blocks that are offloaded to the device.
Before the device code is outlined into a separate OpenCL
kernel compilation unit, their compiler is able to take ad-
vantage of certain code-transformation opportunities that
would not have been possible otherwise, such as bypassing
global memory for inter-kernel communication using chan-
nels. To the best of our knowledge, our work is the first to
implement combined compilation on OpenCL source code
exposing similar transformation opportunities.

3 Optimizing OpenCL for FPGAs

Intel FPGA maintains a best practices guide for writing
OpenCL that will execute efficiently on FPGAs [1]. A sub-
set of these optimizations motivate the remainder of the
work, and are summarized here.

3.1 restrict Pointers to Enable Simulta-
neous Memory Operations

FPGAs improve performance by executing multiple oper-
ations simultaneously. However, memory operations are
defined to behave as if performed in program order, and
can have extremely long latencies. If two memory ac-
cesses never reference the same memory address, then
the compiler can safely reorder or overlap the operations.
By marking a pointer passed as kernel parameters with
restrict, programmers guarantee that any address acces-
sible through that pointer is inaccessible through any other
pointer. The Intel FPGA OpenCL compiler can then per-
form other memory operations simultaneously. As kernel
parameters are passed opaquely from the host to the FPGA,
it is otherwise extremely difficult for the compiler to prove
that memory operations are safe to overlap. Memory op-
erations require hundreds of FPGA cycles, so overlap is
required for an efficient pipeline.

3.2 Prefer Single-Work-Item kernels over
NDRange kernels

In an NDRange kernel, the same computation is executed
by a large number of threads to support the data-parallel
model. On FPGAs, chip area constraints prevent massively
parallel processing units from being constructed. Instead,
NDRange kernels are pipelined on FPGAs, allowing the

stages to be executed concurrently such that subsequent
threads can be started each cycle. All threads are executed
in a single shared pipeline and thus values that do not dif-
fer between threads can be calculated once, and referenced
from within the pipeline. However common intermedi-
ate products cannot be expressed in NDRange kernels, so
single-work-item kernels are preferred.
Moreover, loops in NDRange kernels would have to be
fully unrolled to support efficient pipelined execution be-
cause a pipeline is constructed across thread invocations.
By converting an NDRange kernel to a single work item,
loop exchange can generate pipelines where not otherwise
possible. This conversion can also enable new transforma-
tions such as shift register reduction (described next). The
effectiveness of the pipelined execution model depends on
the target algorithm. Algorithms with little synchroniza-
tion or control-flow may not benefit from single work-
item execution at all and will have better performance with
NDRange kernels.

3.3 Pipelining Reduction Operations with
Shifting Arrays

The performance of the single work-item execution model
depends on the ability to pipeline loops in the kernel
code. Thus, removing loop-carried dependencies is espe-
cially important because such dependencies induce longer
loop initiation intervals. Reduction operations, such as
the double_add_1 method shown in Figure 2, cannot be
pipelined well because the intermediate value temp_sum
must be computed for each iteration before the next iter-
ation can begin. Floating-point operations are relatively
slow, causing the FPGA to stall for the majority of the
computation. Addressing a similar problem in the context
of software loop pipelining in 1992, Rau et al. [14] first
introduced a technique called modulo scheduling that em-
ploys a rotating register file as a means to achieve a more
compact loop schedule and thus reduces the loop initiation
time. This technique was later implemented in hardware in
the Intel IA-64 architecture [15].
As suggested in the best-practices guide [1] and imple-
mented by hand by Zouhouri et al. [17], a variation of
the rotating register technique can be employed by the pro-
grammer manually to minimize pipeline delays caused by
the intermediate value in a reduction operation. Figure 3
shows the same reduction, but with the introduction of a
local array to emulate a shift register. Instead of reducing
elements of arr into a single variable, they are accumu-
lated into a shift register. The shift register’s depth is equal
to the latency, in cycles, of the floating-point operations
that form the dependency. Reduction input is read from the
first element of the shift register, and written into the last.
Effectively, this reduces the initiation interval of the loop
to 1 cycle. After the loop completes, an extra reduction
on the shift register contents produces the final reduction
value. Because the final shift register summation loop has
a smaller trip count, the improved initiation interval of the
original loop yields an overall performance improvement.
The Intel FPGA OpenCL compiler looks for the pipelin-
ing idiom from Figure 3 in OpenCL code, and efficiently



1 __kernel
2 void double_add_1(__global double *arr, int N,
3 __global double *result)
4 {
5 double temp_sum = 0;
6 for (int i = 0; i < N; ++i)
7 temp_sum += arr[i];
8 *result = temp_sum;
9 }

Figure 2 Floating-point reduction sample preventing
loop pipelining. From [1].

1 __kernel
2 void double_add_2(__global double *arr, int N,
3 __global double *result)
4 {
5 double shift_reg[II_CYCLES+1];
6 //Initialize all elements of shift_reg to 0
7 for(int i = 0; i < N; ++i)
8 {
9 shift_reg[II_CYCLES] = shift_reg[0]+arr[i];

10 #pragma unroll
11 for(int j = 0; j < II_CYCLES; ++j)
12 shift_reg[j] = shift_reg[j+1];
13 }
14 double temp_sum = 0;
15
16 #pragma unroll
17 for(int i = 0; i < II_CYCLES; ++i)
18 temp_sum += shift_reg[i];
19 *result = temp_sum;
20 }

Figure 3 Floating-point reduction using a shift register to
enable loop pipelining. From [1].

implements it using a shift register in hardware.

4 Compiling OpenCL for FPGAs

The transformations suggested in the Intel FPGA best-
practices guide are be performed by programmers. How-
ever, a sufficiently capable compiler should be able to au-
tomatically transform OpenCL device code to deliver more
efficient execution on FPGAs. Thus, we integrated some of
the transformations into the Intel FPGA SDK for OpenCL
compiler. This compiler is a closed-source application
based on the LLVM compiler infrastructure. Thus, arbi-
trary compiler passes targeting LLVM 3.0 can modify the
Intermediate Representation (IR) .
Our transformations are performed early in the compila-
tion process because they attempt to automate best prac-
tices when writing source code. OpenCL is designed to
allow for the separate compilation of host and device code.
However, combined compilation allows for optimizations
not previously possible. Moreover, the Intel FPGA com-
piler already requires some degree of such coordination
by the user. For instance, the compiler may generate
single-work-item code for a kernel that the host invoked in
NDRange mode. Our compiler passes make use of coordi-
nation between the host and device code compilation pro-
cesses, passing information between the two to enable cer-
tain transformations. A custom compiler driver facilitates
combined compilation, accepting as input the host and de-
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Figure 4 Custom OpenCL Compilation Flow

vice source-code files. The driver coordinates between the
Intel FPGA compiler modified with our transformations
and the host compiler, based on LLVM 4, with modifi-
cations to analyze and transform host-to-device commu-
nication. To integrate our three transformations with the
Intel FPGA OpenCL Compiler, the host code analyses
are choreographed with the device code transformations
(Figure 4).

4.1 NDRange to Single Work-Item
Loop (NDRangeToLoop)

Under the OpenCL NDRange model, a kernel function
is invoked for a number of threads (work-items) that can
cooperate and synchronize within a work-group. This
model maps extremely well to GPUs, which have many
Single Instruction, Multiple Data (SIMD) processors, but
makes it difficult for kernel functions to express com-
mon work products. On FPGAs, where parallel kernels
are implemented using pipelines, factoring out common
work is key to improving performance. OpenCL allows
thread and work-group sizes to be specified in three di-
mensions, denoted here as Z, Y , and X . The conversion
of a NDRange kernel into a single work-item, transforms
the kernel body into a series of loops over the respective n
dimensions. Each loop executes the original kernel body
for each thread. Thread ID references are remapped to the
appropriate loop induction variable. Unfortunately, how-
ever, the number of dimensions, size, and count of work-
groups are specified in host code and are inaccessible to
device compilation. An example host invocation is shown
in Figure 5.
Thus it is necessary to recover the number of dimen-



1 size_t work_dim = 2;
2 size_t gbl_offset[2] = {0, 0};
3 size_t gbl_size[2] = {64, 8};
4 size_t lcl_size[2] = {32, 1};
5 clEnqueueNDRangeKernel(
6 cmd_queue, kernel, work_dim,
7 gbl_offset, gbl_size, lcl_size,
8 wait_list_size, wait_list, event);

Figure 5 Host NDRange kernel invocation

sions, the starting indices of threads in each dimension,
the number of threads in each dimension, and the num-
ber of threads per work-group in each dimension. To do
so we created a host transformation that injects dummy
functions that take as argument each value of interest. Af-
ter this transformation, standard LLVM passes for inter-
procedural constant propagation are applied. Calls to the
dummy function are inspected, and constant arguments
are transmitted to the device compiler. This technique
can be easily extended to share arbitrary constants and
ranges for device kernel parameters, allowing additional
device code specialization. For generality, the kernel func-
tion signature is first modified to take as argument the
work_dim, global_work_offset, global_work_sizes
and local_work_size values. Then, the results of the
host NDRange invocation analysis are read, and used in
place of the kernel arguments when available.
As long as a kernel contains no synchronization points,
which can be verified by checking the kernel for calls to
the OpenCL barrier() function, the NDRange execution
can be emulated through a single loop nest. To emulate
work-groups, the kernel body is wrapped in loops corre-
sponding to any dimensions for which get_group_id()
is accessed. Calls to get_group_id() are then replaced
with accesses to the appropriate loop induction variables.
Next, loops are inserted to emulate work-items within each
work-group, replacing accesses to get_local_id() and
get_global_id() with the appropriate expressions on
the loop induction variables. Finally, accesses to the invo-
cation dimensions are replaced. As an example, a Hello
World kernel is shown in Figure 6. After applying the
transformations above, the kernel appears as depicted in
Figure 7. Several optimizations can be performed at this
point. Single-iteration loops can be elided entirely, and
dead code elimination can remove the computation of un-
necessary values. By applying these optimizations, the
single-work-item example can be simplified to Figure 8.
In NDRange kernels, work-items must halt execution at
barrier points until all other work-items in the work-group
reach the same point. This behavior can be preserved after
NDRangeToLoop transformation by splitting work-item
loop nests at each barrier point. Our prototype NDRange-
ToLoop transformation can only convert NDRange kernels
with barriers in top-level control flow, outside of any con-
ditional statements or loops. When such barriers are en-
countered, the kernel is partitioned into unsynchronized
sections, and each section is wrapped separately into work-
item loop nests.
If values are calculated before and used after a barrier, they

must be preserved across work-item loops. These values
are identified by inspecting instruction operands, and then
collecting operands calculated in a different partition than
the user. Local arrays equal in size to the work-group are
allocated, and each operand is saved into the array as it is
calculated. Then, uses in other partitions are redirected to
the allocated array.
After transforming the NDRange kernel to a single work-
item kernel, it is necessary to transform the kernel invoca-
tion on the host. To invoke transformed device kernels
appropriately, each clEnqueueNDRangeKernel() invo-
cation is replaced with the following routine:

1. Ensure that the kernel about to be executed is one
which was transformed. If not, invoke with the origi-
nal call to clEnqueueNDRangeKernel()

2. Pass the original dimensions and work-
group sizes and counts as arguments through
clSetKernelArg().

3. Invoke the kernel with clEnqueueTaskKernel() for
single work-item execution.

The prototype implementation of the NDRange transfor-
mation described and evaluated in this paper has some lim-
itations. Its NDRangeToLoop cannot handle barriers inside
control-flow. Also, the work-group size must be known at
compile-time to enable the allocation of the array to allow
uses across partitions.

4.2 Reduction-Dependence Elimination
The floating-point reduction-dependence elimination
transformation implements an idiom suggested by the
Intel FPGA Best Practices Guide [1] as a technique
to remove loop-carried dependencies by inferring shift
registers for loops that carry out floating-point reductions,
as demonstrated by going from Figure 2 to Figure 3.
First, an analysis detects all reduction idioms that are safe
to transform. All loops that do not contain other loops are
scanned for reduction expressions. A reduction expression
a store to a value where an operand of the stored value is
obtained from a load from the same address. The pattern-
matcher handles two cases: when the reduction value is
accessed through a pointer with no offset, and when the re-
duction value is a memory location specified via a base ad-
dress and an indexing expression. The latter case requires
the use of exactly the same indexing expression for both
the store and the corresponding load. Once a reduction ex-
pression is found, the analysis must verify if it is safe and
beneficial to apply the transformation. To do so, the analy-
sis performs the following checks:
• The type of the reduction value must be either 32-bit

or 64-bit floating-point.
• The reduction value must not be used elsewhere in the

loop body other than in the reduction operation.
• If reduction is done on an array element, the indexing

expression and the array base pointer must be loop
invariant.

• The binary operations that constitute the reduction
must be associative and commutative.

• If the loop trip count is known at compilation time and
is less than the shift register size, the reduction should
not be transformed.



1 __kernel void hello_world(int tid) {
2
3
4
5
6
7
8 unsigned thread_id = get_global_id(0);
9

10 if (thread_id == tid) {
11 printf("foo #%u: Hello!\n", foo);
12 }
13
14
15 }

Figure 6 HelloWorld Kernel. From [3].

1 __kernel void hello_world(int tid,
2 int offset_x, int offset_y, int offset_z,
3 int global_x, int global_y, int global_z,
4 int local_x, int local_y, int local_z) {
5 int group_sz_x = (global_x-1) / local_x+1;
6 for (int c = 0; c < group_sz_x; c++) {
7 for (int f = 0; f < local_x; f++) {
8 unsigned thread_id = (c *
9 local_x + offset_x) + f;

10 if (thread_id == foo) {
11 printf("tid #%u: Hello!\n", tid);
12 }
13 }
14 }
15 }

Figure 7 After NDRange [3].

1 __kernel void hello_world(int tid,
2 int offset_x, int offset_y, int offset_z,
3 int global_x, int global_y, int global_z,
4 int local_x, int local_y, int local_z) {
5
6 for (int c = 0; c < 2 ; c++) {
7 for (int f = 0; f < 32; f++) {
8 unsigned thread_id = (c * 32) + f;
9

10 if (thread_id == foo) {
11 printf("tid #%u: Hello!\n", tid);
12 }
13 }
14 }
15 }

Figure 8 After Constant Propagation [3].

The final loop trip-count check warrants further explana-
tion: calculation of the final reduction value requires the
computation of the sum of the values in the shift register,
which is a loop with exactly the same type of loop-carry
dependency that was eliminated in the transformed reduc-
tion loop. This summation loop has a trip count equal to
the number of elements of the shift register. Thus, the
transformation is only beneficial when the number of orig-
inal reduction iterations exceeds the size of the shift regis-
ter, which is a compiler-specified constant suitable to the
target FPGA. The shift register must have enough ele-
ments to cover the latency of floating-point operations that
would prevent pipelining. In the prototype, targeting the
Intel FPGA Stratix V, this constant is eight, which is the
floating-point operation latency for the device.
Code generation consists of the following steps: a shift
register array is created for a given reduction operation.
All its values are initialized to zero in the loop pre-header.
The original reduction statement is then rewritten to one
that instead performs a store into the shift register’s tail
element. Immediately after the reduction expression, the
values of the shift register are shifted down. In the loop
epilog, the final reduction value is computed by performing
a sum over all shift register values and is stored into the
original intended reduction value.

4.3 Restrict Pointer Kernel Parameters
When creating a buffer with the OpenCL API
clCreateBuffer() function a programmer can use
the CL_MEM_USE_HOST_PTR to indicate that the buffer
should use memory referenced by the host [11]. Thus,
the prototype assumes that in files that do not contain the
CL_MEM_USE_HOST_PTR flag there are no overlapping
buffers. Based on this assumption the prototype marks all
global pointers as restrict for kernels in these files. In a
refinement to this approach, the compiler would first mark
all buffers that are not allocated in the host memory and
then exclude only the kernels that use more than one such
buffer from having their parameters marked restrict.

5 Prototype Performance Study

Several unmodified OpenCL kernels from the Rodinia
benchmark suite, form the baseline for a study of the proto-

type performance. To generate transformed kernels all the
transformations described in this paper are enabled unless
otherwise specified. In both the baseline and transformed
benchmarks, the host code that loads and launches ker-
nels had to be hand-modified to load kernels from FPGA-
synthesized binaries, rather than compile them from source
at runtime. We evaluate only benchmarks that NDRange-
ToLoop can transform, limiting ourselves to gaussian,
hotspot3D, kmeans, nn, and SRAD. The remaining bench-
marks either fail to compile under the Intel FPGA OpenCL
compiler, or are unaltered by our transformations. Out of
the benchmarks tested, pointer restriction was applied
to hotspot3D, kmeans, and SRAD. Reduction-dependence
elimination applies to the gaussian and kmeans bench-
marks.
Performance was evaluated on a Terasic DE5-Net board
that contains an Altera Stratix V GX FPGA with 4GB of
1600 MHz DDR3 memory. The board is connected to a
machine with an Intel Core i7-4770 CPU with 32GB of
DDR3 memory, running CentOS 6.7 (Linux 2.6.32). We
use the Intel FPGA SDK for OpenCL version 16.1.0.196.
Our transformations on the device code are implemented
against the SDK-compatible LLVM 3.0, while the host
code transformations and analyses are implemented with
the LLVM 4 compiler.
Each benchmark was run ten times for both the baseline
and the transformed versions with the mean overall exe-
cution time reported. Minimal variance was observed be-
tween runs of a given program, never exceeding 0.5% of
the mean. Thus the variance is not reported.

5.1 Benchmarks
Table 1 shows transformed kernel execution time and ratio
over untransformed kernels. The five benchmarks handled
by this prototype implementation can be divided into three
groups according to the performance in relation to the base-
line. For gaussian and hotspot3d, the transformed code
is significantly slower than the baseline. nn and srad have
roughly baseline performance; and kmeans is 2.6× faster
than the baseline.

5.1.1 gaussian
This kernel contains a loop with a memory dependence
on load operations. Before our transformations, the per-
formance impact of the memory dependence is mitigated



Benchmark Execution Time
Baseline (s)

Execution Time
Transformed (s) Ratio Restrict NDRangeToLoop FloatReduce

gaussian 0.28 1.85 6.69 8 4 4
hotspot3D 9.65 25.12 2.60 4 4 8
kmeans 37.52 13.43 0.36 4 4 8∗

nn 0.05 0.05 0.98 8 4 8
srad 105.50 111.70 1.06 4 4 8

Table 1 Benchmark Execution Time and Applicable Transformations

because multiple work-items can be simultaneously exe-
cuted. After NDRangeToLoop however, the pipelining op-
portunities are obscured, because our analysis is unable
to determine that the various kernel parameters are inde-
pendent. Though the introduced loops can be pipelined,
the load and store operations must be executed in or-
der to preserve semantics, and this effect cannot be mit-
igated by operator duplication as before our transforma-
tion. Performance could be improved either by not apply-
ing NDRangeToLoop kernel parameters are not marked re-
strict, or by exposing heuristics from the underlying com-
piler.

5.1.2 hotspot3D
This kernel contains a loop-carried dependence. Some
loops are therefore not pipelined, which degrades the over-
all performance. Additional heuristics that measure over-
all kernel capacity for pipelining across all loops would
be useful to decide when NDRangeToLoop transformation
would be beneficial.

5.1.3 nn and srad:
Algorithms with little control-flow may not benefit from
single work-item execution. In these benchmarks, the
kernels transformed contained at most two conditional
branches. As a result, both the baseline and transformed
benchmarks can issue a new thread each cycle.

5.1.4 kmeans
Both the NDRangeToLoop and Restrict transformations
are applied to this kernel. One of the kernels in kmeans
contains a nested loop. Performance improves dramati-
cally because this nested loop can be fully pipelined only
with the NDRangeToLoop transformation.
Reduction-dependence elimination for kmeans was dis-
abled because it degraded performance. The reduction loop
nests in a loop that is already fully-pipelined, and the re-
sulting improved reduction loop initiation interval means
that a new loop iteration is dispatched every cycle for this
and the outer loop. As a result, the loop induction vari-
able increment and the comparison between the IV and the
loop upper bound, together, form 87% of the kernel criti-
cal path (according to the Intel compiler optimization re-
port). In turn, the FPGA is forced to reduce the operating
frequency to accommodate the number of integer opera-
tions that must be performed simultaneously on the induc-
tion variables of both loops in the loop nest. There is no

way for this prototype implementation to perform this kind
of analysis without access to the Intel compiler’s internals
that perform loop pipelining. However, with access to the
pipelining code, an analysis could be added to the trans-
formation that would detect these conditions and deem the
transformation unprofitable.

5.2 Reduction-Dependence Elimination
Efficacy

To measure the impact of the floating-point reduction de-
pendence elimination as a stand-alone transformation, we
evaluated several applications where the transformation
finds opportunities to apply this transformation. For appli-
cations where the transformation analysis finds no oppor-
tunities, the code is left untouched so there is no impact.
The following data points are not general because few sin-
gle work-item example kernels are available for evaluation;
rather, they serve as motivating examples of the kinds of
gains that are possible. The data is not presented in an ag-
gregated fashion because the transformed code varies in
source: some are hand-written kernels taken from [17],
some are Rodinia benchmark kernels transformed using the
prototype toolchain.
The single work-item version of the srad benchmark,
taken from [17] (the baseline single work-item implemen-
tation), which has a frequently executed reduction kernel,
sees a 2.6× decrease in overall kernel execution time with
the transformation applied.
A hand-written single work-item version of the lud bench-
mark, from [17], with the transformation applied only sees
a 7% improvement in kernel execution time. Despite catch-
ing several opportunities in a hot region of the kernel code,
the impact is small because the reduction loop has a vary-
ing trip count that depends on the iteration of the contain-
ing loop. As a result, some reductions are smaller than the
size of the shift-register and some are larger. The effect
is that these two cases cancel each other out, yielding a
marginal overall improvement. A classical solution to this
pattern would be to version the loop into a portion with a
small trip-count that maintains the original reduction pat-
tern, and a portion with a sufficiently large trip-count that
is transformed. However, versioning is costly for FPGAs
because it results in higher resource utilization. In our ex-
periments, loop versioning yielded no benefit.
The gaussian benchmark, after our NDRangeToLoop
transformation, executes 3.3× faster with the reduction
transformation applied. One of the two kernels in this
benchmark consists of a single reduction operation on an



array element. After NDRangeToLoop transformation this
reduction becomes a single hot loop.
The only case where eliminating reduction dependence
leads to performance degradation is in the kmeans bench-
mark, as described in section 5.1.4.

6 Conclusion

Combining compilation of device kernel code and host
code these compilation paths allows for inter-compiler
communication which, in turn, enables new, previously im-
possible, compiler transformation opportunities. We have
implemented three transformations for OpenCL execu-
tion on FPGAs using the combined compilation toolchain
and studied their performance. The variable performance
across benchmarks indicates that more analysis is required
to determine when transformations should be applied. A
sophisticated analysis could prevent transformations from
occurring when it would be unprofitable; more specifi-
cally, having access to the loop pipelining code of the In-
tel FPGA compiler would allow for the application of the
NDRangeToLoop transformation only when the kernel can
be pipelined successfully. Access to such code and analy-
ses would also help with the issue encountered when ap-
plying the reduction-dependency elimination transforma-
tion to the kmeans benchmark.
This work is a step forward in the automatic optimiza-
tion of OpenCL applications for FPGA execution. While
these transformations were only tested on a small number
of benchmarks, and experienced varying levels of success,
the performance improvements seen show that these tech-
niques, when applied judisciously, can dramatically im-
prove program performance without programmer involve-
ment. Such automatic transformations will play a key role
in continued FPGA adoption, as specialized device knowl-
edge can be further reduced and performance of generic
OpenCL programs made truly portable.
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