
Energy Consumption Estimation of API-usage in
Mobile Apps via Static Analysis

Abdul Ali Bangash∗, Kalvin Eng†, Qasim Jamal‡, Karim Ali§, and Abram Hindle∥
Department of Computing Science, University of Alberta, Edmonton, AB, Canada ∗†§∥

Department of Computing Science, FAST-NU, Islamabad, Pakistan ‡

Email: (∗bangash, †kalvin.eng, §karim.ali, ∥hindle1) @ualberta.ca, ‡i190459@nu.edu.pk

Abstract—Smartphone application (app) developers measure
the energy consumption of their apps to ensure that they do not
consume excessive energy. However, existing techniques require
developers to generate and execute test cases on expensive,
sophisticated hardware. To address these challenges, we propose
a static-analysis approach that estimates the energy consumption
of API usage in an app, eliminating the need for test case
execution. To instantiate our approach, we have profiled the
energy consumption of the Swift SQLite API operations. Given
a Swift app, we first scan it for uses of SQLite. We then combine
that information with the measured energy profile to compute E-
factor, an estimate of the energy consumption of the API usage in
an app. To evaluate the usability of E-factor, we have calculated
the E-factor of 56 real-world iOS apps. We have also compared
the E-factor of 16 versions and 11 methods from 3 of those
apps to their hardware-based energy measurements. Our findings
show that E-factor positively correlates with the hardware-based
energy measurements, indicating that E-factor is a practical
estimate to compare the energy consumption difference in API
usage across different versions of an app. Developers may also
use E-factor to identify excessive energy-consuming methods
in their apps and focus on optimizing them. Our approach is
most useful in an Integrated Development Environment (IDE) or
Continuous Integration (CI) pipeline, where developers receive
energy consumption insights within milliseconds of making a code
modification.

Index Terms—Mobile Application, Static Analysis, Energy
Estimation

I. INTRODUCTION

Smartphone apps that consume too much energy usually
garner poor user reviews, leading to lost revenue [1], [2]. To
ensure that an app is energy efficient, app developers have
several energy profiling techniques to choose from, such as
hardware-based measurement tools [3]–[5] and software-based
estimation models [6]. To get accurate energy measurements
using the hardware-based tools, developers must run a large
number of test cases, which takes time and effort. Additionally,
setting up the necessary measurement infrastructure requires
developers to have specialized knowledge on smartphones and
energy measurement devices, which they see as an unwanted
task [7]. Furthermore, acquiring the necessary hardware can
be costly, adding a financial burden. Alternatively, developers
may use software-based techniques that rely on estimation [6],
[8] and prediction [9], [10] models. While these techniques
may not be as precise as their hardware-based counterparts,
developers still prefer them because they do not require ex-
pensive equipment or specialized expertise to set them up [9].

However, developers still need access to a smartphone, as
well as generate and execute test cases to measure the energy
consumption of their apps.

While hardware-based techniques execute test cases to mea-
sure energy consumption, software-based techniques executes
test cases to gather runtime information for energy estima-
tion. Some runtime information, such as execution time of a
task or the response time of a component, may be obtained
without test case execution using static-analysis techniques,
such as worst-case execution-time (WCET) [11] and worst-
case response-time (WCRT) [12]. However, this information
alone is insufficient to understand the energy consumption of
a task [13], because software-based techniques still require
additional information such as operating system logs, type of
components used, and type of operations performed during
execution. Moreover, creating effective test cases is a complex
and costly process because it requires a thorough understand-
ing of the app and its requirements, as well as the ability to
anticipate and design for potential edge cases [14]. Running
these test cases also requires significant resources such as
computing time, power, and storage, adding to the overall
testing expense [15]. As the software evolves, developers also
need additional or updated test cases [16], [17] and such test
cases might not be available all of the time.

To address the limitations of existing energy measurement
techniques, we propose a static-analysis based approach that
estimates the energy consumption, E-factor, of an API in
a given app. We focus on API usage because API events
consume 85% of the energy in an app compared to developer-
written instructions (e.g., branch or arithmetic instructions)
and system events (e.g., garbage collection or process switch-
ing) [18]. Instead of depending on app runtime information,
our approach uses API energy profiles. An API energy profile
is the base energy cost (in joules) of the tasks that the API
can perform. Obtaining a single API energy profile is more
cost-effective than obtaining runtime information for each
individual app, because that profile may be used for all apps
that utilize that API. To implement our approach, we have
developed an E-factor calculator (EC) that generates the call
graph of a given app and scans that app for API uses. Based
on the API uses and its energy profile, EC then calculates
E-factor without executing the app.

To evaluate our approach, we have studied 56 real-world
apps that use the SQLite API. We focus on SQLite in this

1 class ViewController: UIViewController {
2 override func onTap() {
3 DB.insert(id: i, name: "Cat")
4 DB.read(id: i)
5 }
6 }

(a) Version-1 of the app.

7 class ViewController: UIViewController {
8 override func onTap() {
9 DB.insert(id: i, name: "Cat")

10 DB.update(id: i, name: "SCat")
11 }
12 }

(b) Version-2 of the app.

13 class ViewController: UIViewController {
14 override func onTap() {
15 DB.update(id: i, name: "SCat2")
16 DB.read(id: i)
17 }
18 }

(c) Version-3 of the app.

19 // SQLite API usage
20 import SQLite3
21 class DB {
22 // Updates username by id in database
23 func update(id:Int, name:String) { ... }
24 // Inserts username by id
25 func insert(id:Int, name:String) { ... }
26 // Returns all users from database
27 func read(id:Int) -> [User] { ... }
28 }

(d) A common class across all versions.

Fig. 1: Three versions of a sample Swift iOS app, each using
the DB class to perform various SQLite operations.

study, because it uses the CPU, memory, and storage com-
ponents of a smartphone, which are known to be one of the
most power-heavy smartphone components [19]. To obtain the
energy profile of SQLite, we first created a set of 24 micro-
benchmarks that represent the insert, update, and select

operations. These micro-benchmarks are freely available [20]
as a useful resource for future researchers who wish to measure
the impact of SQLite operations on other performance aspects,
such as execution time and storage size etc. Among the real-
world apps, we have compared the E-factor of 16 versions and
11 methods to their hardware-based energy measurements. Our
findings show that E-factor is a reliable estimate to compare
the energy consumption between versions of an app as well
as between methods of an app.

II. MOTIVATING EXAMPLE

Figure 1 shows a development scenario that we will use to
illustrate the limitations of current approaches for measuring
and estimating energy consumption. We will then present our
solution to address these limitations.

In the example, we assume that a developer produces
three versions of their app, where each one uses the SQ-
Lite differently. Figure 1d shows DB, a helper class that
implements the SQLite API, which is commonly used by all
versions. In this class, DB.read(..) executes the "SELECT

..." query, DB.insert(..) executes the "INSERT ..."

query, and DB.update(..) executes the "UPDATE ..."

query on a database. Figure 1a shows that DB.insert(..)
and DB.read(..) are called in Version-1 in a UI event for
tapping the screen (Line 3). Figure 1b shows that the event
handler in Version-2 calls DB.update(..) (Line 10) instead
of DB.read(..). Figure 1c shows that Version-3 calls both
DB.update(..) (Line 15) and DB.read(..) (Line 16).

Depending on the task that an API performs, an API may
consume different amounts of energy [18]. In our example,
the SQLite API may perform create, read, update, or delete
(CRUD) operations on a locally stored SQLite database. Each
CRUD operation has a different workload and requires a
different time duration to complete. Therefore, each version
in Figure 1 consumes a different amount of energy. To inform
developers how their code modifications in each version would
affect the energy consumption of their app, we first demon-
strate the usage of current energy measurement approaches,
and then we demonstrate the usage of our proposed approach.

1) Using A Traditional Approach: To collect the hardware-
based energy measurements, we have to first generate and
execute test cases. For each version, we have written 5 test
cases. In each test case, the method onTap() is executed
100–105 times. Following standard practice [4], we have
executed each version 10 times on iGreenMiner, a state-of-
the-art hardware-based energy measurement framework for
iOS [21]. Our results show that for 100–105 executions of
onTap(), the average energy consumption of Version-1 is
25.12 joules, Version-2 is 46.45 joules, and Version-3 is
25.45 joules. The average time for executing the test cases
per version is 121.33 seconds.

2) Using the proposed approach to calculate E-factor:
This approach does not need to execute any test cases. It
instead uses an energy profile of an API that represents the
base energy cost of its tasks. The energy profile of an API is
obtained by measuring the energy consumption of the API’s
tasks on a hardware-based energy measurement setup. This
energy profile is portable and can be used across multiple
apps. Using the energy profile, we calculate E-factor for each
version. The results show that executing onTap() for 100–
105 reports an average E-factor value of 50.25 joules for
Version-1, 92.91 joules for Version-2, and 50.89 joules for
Version-3.

The traditional approach typically reports a lower energy
measurement compared to the E-factor estimate because an
executing app goes through several architectural level perfor-
mance optimizations during its runtime. These optimizations
result in a significant absolute difference in the energy mea-
surement of the traditional approach and the energy estimates
of E-factor. Nonetheless, since the relative difference between
the energy measurements and E-factor is consistent, we can

identify the energy extensive version in our example. In this
example, both E-factor and the traditional approach identify
Version-2 as the most energy extensive version and Version-1
as the least energy extensive. The average time for calculating
E-factor per version is 12 milliseconds, which is 106 times
faster than the traditional approach.

In a real-world scenario, it is impractical to follow the
traditional approach and execute all test cases at every code
modification [14], especially in an IDE where a developer is
continuously making changes to their code. E-factor is more
suitable for this scenario because it provides energy estimates
that identify if a code change consumes more/less energy, at
app level and method level, in a matter of milliseconds.

III. HOW DO WE COMPUTE E-FACTOR?

In this section, we first show how we obtain the energy
profile of an API, which is necessary for computing E-factor.
We then present our generalized approach to calculate the
E-factor of the uses of an API. Finally, we instantiate our
approach to calculate E-factor of an example code that uses
the SQLite API.

A. Energy Profile Collection

To collect the energy profile of an API, we first have to
create a set of micro-benchmarks, where each benchmark
executes a separate API task. This structure enables us to
measure the energy consumption of each task in isolation.
We then generate the API energy profile by executing these
micro-benchmarks and measuring their energy consumption
on a hardware-based infrastructure. We only need to perform
this process once, and then reuse its results in all future calcu-
lations. We now demonstrate the process through calculating
the energy profile of the SQLite API.

1) Micro-Benchmarks Creation: We first create a simple
iOS app that connects to an SQLite database stored on
a smartphone. We then instrument this iOS app to create
8 micro-benchmarks for each SQLite operation (i.e., insert,
update, and read), where each micro-benchmark performs an
SQLite operation 100–107 times. We limit the iterations to
107, because executing more iterations becomes impractical
as the execution thread on the smartphone tends to time out
and detach from the energy measurement infrastructure.

2) Energy Measurement: To measure the energy consump-
tion of the generated micro-benchmarks, we use iGreen-
Miner [21], which supports iOS apps that can run on iPhone 11
and iOS 13.4.1. iGreenMiner is a hardware-based energy
measurement framework, it uses the Monsoon power moni-
tor [22] to provide accurate energy measurements of the iOS
apps. iGreenMiner can only execute Apple-script based test
cases, which creates an overhead for our energy measure-
ments. To overcome this hurdle, we extended iGreenMiner
to support executing command-line-based test cases using
Xcode command-line tools [23]. We have also optimized the
iGreenMiner framework to decrease energy readings overhead
during measurement and increase its automation capability.
Since iGreenMiner requires the user to manually input the

test case execution time, we have written a parser for Xcode’s
build log files where we store the start and tear-down times
of a micro-benchmark execution. This information helps us
synchronize the iGreenMiner’s reported energy values with
test execution time to get the exact energy measurement of an
SQLite operation. In Section IV, we use this setup to measure
the energy consumption of the real-world apps’ versions and
methods.

To calculate the energy consumption of the micro-
benchmarks, we execute them 10 times each in a random order
on iGreenMiner. Excluding the app setup and initialization
time, this step takes an average of 1.1 ± 0.13 seconds to
2.26 ± 1.52 hours depending on the number of times that
an SQLite operation executes in a benchmark. This long
execution time makes it infeasible to pre-populate a database
with a random number of records before each test case
execution. Therefore, we keep the initial database empty for
the insert micro-benchmarks. For the select and update

micro-benchmarks, we pre-populate the database with 107

records to read and update from.
Table I presents the energy cost of each SQLite operation (in

joules) when it executes once (Baseexec) and when it executes
101–107 times in a loop. The data shows that, after 102

iterations, select always consumes the least energy, while
insert and update consume more, but similar, amounts
of energy. This result shows that one API operation, in
comparison to another API operation, consumes different
amounts of energy even for the same number of iterations.
Therefore, profiling API operations separately is important
because knowing the operation execution frequency without
knowing the type of operation is not sufficient to reason about
its energy consumption.

B. General Approach For Calculating E-factor

There are five steps that a researcher or developer should
follow to determine the E-factor of an API. To automate these
steps, we have developed an E-factor calculator (EC) that
works as follows:

1) Platform selection: select a smartphone app development
platform such as Android or iOS.

2) API selection: based on the selected platform, select an
API to measure the energy consumption of its uses.

3) Call-graph (CG) generation: extract the app call-graph.
4) API call methods identification: using CG information,

identify methods that use the selected API; produce
Method-to-API mappings by tagging these method calls
with source level information.

5) E-factor calculation: use the Method-to-API mappings
and the API energy profile to calculate E-factor.

C. Specific Instantiation for SQLite

To calculate the E-factor for the SQLite API, we discuss
how we instantiate each step in our methodology:

1) Platform Selection: from the top three smartphone plat-
forms (i.e., Android, iOS, and Windows), we chose iOS
because developers prefer it for generating more revenue [24],

TABLE I: The energy profile of SQLite (in joules). Baseexec is the cost of an operation executed once.

of Executions

Operation Baseexec 101 102 103 104 105 106 107

insert 0.00249 1.13 1.12 2.49 22.25 248.72 2,462.33 23,313.01
update 0.00251 1.20 1.23 2.66 25.13 249.33 2,494.38 23,677.88
select 0.00023 1.61 1.73 1.78 2.28 15.53 184.99 1,877.99

[25]. Furthermore, iOS development is expensive compared
to the other app development platforms [26]. Since E-factor
relieves the developer from owning hardware to execute test
cases, E-factor becomes a more desirable choice for iOS
developers.

2) API Selection: we focus on the SQLite API [27] that en-
ables a developer to use a self-contained transactional database
for persistent storage, a feature that most apps need [28].

SQLite supports several smartphone operating systems [29].
Both Apple and Google use it for their native apps [30]–[32].
Social-networking apps (e.g., Facebook), browser apps (e.g.,
Firefox), communication apps (e.g., Skype), and cloud storage
apps (e.g., Dropbox) also use SQLite for data storage [31].
Therefore, our focus on studying the energy consumption of
SQLite will affect millions of users and developers worldwide.
Knowing how the SQLite API consumes energy, developers
can identify energy-intensive operations for better targeted op-
timization. These optimizations will ultimately lead to longer
battery life for the device and a better user experience.

3) Call-graph (CG) generation: To detect the uses of the
SQLite API in an iOS app, EC generates its CG using the
Class-Hierarchy Analysis (CHA) [33] in SWAN [34]. We
use CHA for a sound CG to provide developers with energy
estimation for the largest number of potential execution paths
that may execute at runtime.

4) API Call Methods Identification: EC traverses the CG to
identify method calls in the code that perform SQLite opera-
tions. For each method that performs an SQLite operation,
EC stores a method-to-API mapping for it, which consists
of: the method name, the SQLite operation that it performs,
source line at which the API is invoked, and the operation
frequency. Figure 2 shows a sample iOS app that we will
use to illustrate what method-to-API mappings are and how
EC uses them to calculate E-factor. In this app, the primary
methods that perform SQLite operations are DB.update(..),
DB.insert(..), and DB.read(..).

To create method-to-API mappings, EC first identi-
fies the methods that call these primary methods. In
class A, EC detects that A.foo() invokes DB.insert()

(Line 32). Therefore, EC creates a method-to-API map-
ping of A.foo() -> Insert @ Line 32. EC also de-
tects that A.qux() invokes DB.insert() twice (Line 36
and Line 37). Therefore, EC creates two method-to-API map-
pings of A.qux() -> Insert @ Line 36 and A.qux()

-> Insert @ Line 37. In class B, EC detects that B.bar()
invokes DB.update() in a loop (Line 44). Therefore, EC
creates a method-to-API mapping B.bar() -> Update* @

Line 44 where * represents an operation in a loop. EC

30 class A {
31 func foo() {
32 DB.insert(...)
33 }
34
35 func qux() {
36 DB.insert(...)
37 DB.insert(...)
38 }
39 ...
40 }

(a) Class A

41 class B {
42 func bar() {
43 for k in 1 ... n:
44 DB.update(...)
45 }
46 ...
47 }

(b) Class B

48 class C {
49 func baz() {
50 B.bar()
51 A.foo()
52 }

(c) Class C

53 override func tap(){
54 DB.read()
55 }
56 ...
57 }

Fig. 2: Three Swift classes: A, B, and C in a sample iOS app
that use DB to perform SQLite API operations.

identifies such operations by checking if an operation is
enclosed in a for loop, while loop, or enclosed in a UI
event, such as tapping/swiping a screen or touching a UI
button. While a UI event is not considered a loop in the
traditional sense, it may be triggered multiple times by the
user. Therefore, for energy estimation, we consider a UI event
as code that may execute in a loop. This assumption is essential
for measuring the energy consumption of an app because
the more frequently an event is triggered the more energy
it consumes. In class C, EC detects that C.baz() invokes
B.bar() (Line 50), which then invokes DB.update() in a
loop. Because of this call chain, EC creates a method-to-API
mapping C.baz() -> B.bar() -> Update* @ Line 50.
EC also detects that C.baz() invokes A.foo() (Line 51),
which then invokes DB.insert(). Given this call chain,
EC creates a method-to-API mapping C.baz() -> A.foo()

-> Insert @ Line 51. Class C has an additional function
tap() that is a user input event and it invokes DB.read().
Therefore, EC creates a method-to-API mapping C.tap() ->

Read* @ Line 54.

5) E-factor Calculation: Using the SQLite energy profile
from Table I, EC identifies the energy consumption of each
method-to-API mapping. The energy consumption of map-
pings that contain a * is represented by the range of energy
consumption values in the energy profile for several number of

TABLE II: Energy consumption (in joules) of the method-to-API mappings for the sample app in Figure 2. The value “−”
means “not applicable”, and we use it for operations that are not in a loop.

of Executions

Method-to-api mappings Operation Baseexec 101 102 103 104 105 106 107

A.foo()-> Insert@Line 32 Insert 0.0024 − − − − − − −
A.qux()-> Insert@Line 36 Insert 0.0024 − − − − − − −
A.qux()-> Insert@Line 37 Insert 0.0024 − − − − − − −
B.bar()-> Update*@Line 44 Update* 0.0025 1.20 1.23 2.66 25.14 249.33 2,494.38 23,677.88
C.baz()->B.bar()-> Update*@Line 50 Update* 0.0025 1.20 1.23 2.66 25.13 249.33 2,494.38 23,677.88
C.baz()->A.foo()-> Insert@Line 51 Insert 0.0024 − − − − − − −
C.tap()-> Read*@ Line 54 Read* 0.0002 1.61 1.73 1.78 2.28 15.53 184.99 1,877.99

TABLE III: E-factor values (in joules) of the aggregated methods from Table II. The value “−” means “not applicable”, and
we use it for operations that are not in a loop.

of Executions

Method Baseexec 101 102 103 104 105 106 107

A.foo() 0.0024 − − − − − − −
A.qux() 0.0048 − − − − − − −
B.bar() 0.0025 1.20 1.23 2.66 25.14 249.33 2,494.38 23,677.88
C.baz() 0.0049 1.20 1.23 2.66 25.14 249.33 2,494.38 23,677.88
C.tap() 0.0002 1.61 1.73 1.78 2.28 15.53 184.99 1,877.99

Total for App 0.0148 4.01 4.19 7.10 52.55 513.99 5,173.75 49,233.75

iterations. For example, if a mapping has a Read* operation,
its energy consumption is 1.61 for 101 iterations, 1.73 for
102 iterations, etc. The energy consumption of a mapping that
is not in a loop is the Baseexec cost in the energy profile.
Table II shows the energy consumption of each method-to-API
mapping in the sample app from Figure 2. The table shows the
method that performs an SQLite operation, its Baseexec cost,
and the energy consumption of executing that operation in a
loop 101–107 times.

To calculate the E-factor value for each method, we aggre-
gate and add up the energy consumption values from Table II
by method name. Table III shows the final aggregated values.
To calculate the E-factor of the complete API usage, we take
the sum of the E-factor values of all methods. Table III shows
that, our sample app may consume 0.0148 (100 iterations)
to 49, 233.75 (107 iterations) joules depending on its SQLite
usage.

Using EC, developers can calculate E-factor after each
instance of code modification, which may be presented to them
in the form of a table similar to Table III. This table displays
the energy cost of a specific API usage for a method and
for the entire app. EC is open-source and is freely available
online [20].

IV. EVALUATION

With E-factor, we evaluate these research questions:
RQ1: Can E-factor be used to compare the energy con-

sumption difference between the versions of an app in
the context of an API’s usage?

RQ2: Can E-factor’s fine-grained method-level energy es-
timates be used to compare the energy consumption of
the methods of an app?

RQ3: Does our automated program (EC) accurately esti-
mates the E-factor of real-world apps?

A. Dataset Preparation

To answer our research questions, we first select real-world
apps and calculate their E-factor.

1) App Selection: To select apps for evaluation, we search
GitHub [35] applying the following inclusion and exclusion
criteria on all available iOS apps:

• Include all iOS projects written in Swift, because it is
the currently supported language for CG generation in
our underlying tool SWAN.

• Include projects that implement the SQLite API by
searching for “import sqlite3” within the codebase.

• Exclude projects that are libraries, APIs, or incomplete.
To ensure this criterion, we selected projects that have a
user-interface code structure. We recognize that structure
by searching for a UI storyboard or an AppDelegate.

• Exclude projects that have less than two commits in their
repository, because the main use case for E-factor is
comparing the energy consumption between app versions.

• Exclude projects that do not contain .xcodeproj or
.xcworkspace file extension. This exclusion makes sure
that the projects are executable.

• Exclude projects built for iOS platform < 9 because our
underlying energy measurement infrastructure (iGreen-
Miner) supports apps built for iOS >= 9.

After applying our selection criteria, we ended up with
59 real-world apps. We group these apps into three cate-
gories (entertainment, healthcare, and utility), while some apps
remain uncategorized because either their documentation is
missing or their commit messages are not clear enough to

●

●

●

100

200

300

Entertainment Healthcare Uncategorized Utility
App Categories

N
o.

 o
f C

om
m

its

●

●

●

●

●

●
9

10

11

12

13

Entertainment Healthcare Uncategorized Utility
App Categories

Lo
g(

N
o.

 o
f S

IL
 L

in
es

)

Fig. 3: Information about the main app categories for the real-world apps in our dataset.

infer their category. Figure 3 shows the number of commits
and the number of SIL lines in each app in our dataset. The
number of commits show how active the project development
is, while SIL lines represent the project size.

2) E-factor Calculation: To detect methods that contain
a use of SQLite, EC searches our dataset using case-
insensitive regular expressions: .*SELECT.* for read oper-
ations, .*UPDATE.* for update operations, and .*INSERT.*
for insert operations. EC then traverses the CG that SWAN
generates for an app to identify those methods that invoke
these SQLite methods. Using the identified method-to-API
mappings, EC calculates the E-factor values of apps and their
methods as explained in Section III-C5. Figure 4 shows the
E-factor value for each app category for 100–107 executions.
The figure also shows that the rank of app categories by E-
factor changes across different number of iterations. Out of the
59 apps, there were 8 apps with zero E-factor value, because
the SQLite operations in these apps are never invoked by a
method. We could not estimate the E-factor of 3 additional
apps, because they either contained incomplete code or had
a third-party API dependency that we could not resolve to
build the app. It took an average time of 12.44 milliseconds to
calculate the E-factor for each of the 56 real-world apps, where
the majority of this time was spent in call-graph traversal.

B. E-factor for Comparing Versions (RQ1)

1) Setup: In RQ1 we investigate if developers can use E-
factor to compare the energy consumption of an API’s usage
between the various versions of an app.

a) Commit Selection: To consider an app from our
dataset for RQ1, it has to be supported on our energy measure-
ment setup using iGreenMiner by following this criteria: (1)
should have a test-suite with UI tests, (2) should not depend on
a third party web API to execute (e.g., Firestore), (3) should
not require login credentials from a web service that we do not
have access to, (4) should not run into runtime errors, (5) and
should have an API use inside a loop or a UI event. Applying
this criteria, we have 3 apps to investigate:

• CarTrack [36]: This app is used to register people with
their profiles for record keeping. We identified 10 insert

and 7 select operations in this app.

• Inventario [37]: This app is used for keeping an inventory
list. We identified 8 insert and 5 select operations in
this app.

• Planner [38]: This app is a doodle note taking app used
to save a note for each calendar day. We identified
2 insert, 3 select, and 1 update operations in this
app.

We then extracted 34 commits from CarTrack, 83 commits
from Inventario, and 35 commits from Planner to calculate
their E-factor. We could not build 16/152 commits because
their code was insufficient to build the app. Eventually, we cal-
culated E-factor for 136 commits in total. Figure 5 shows the
app-level E-factor of each commit when an SQLite use would
execute 104 times. The figure presents how E-factor evolves
over time based on the SQLite usage in an app. Calculating E-
factor for all commits was relatively straightforward because
it does not require any test case execution. However, gathering
hardware-based energy measurements (i.e., ground-truth) for
all commits was unrealistic. This is because, for each commit,
we would need to instrument it, then generate and execute
its test cases. Following the methodology of Romansky et
al. [39] for effectively mining commits to measure energy
consumption, we selected commits whose SQLite use change
over time. Therefore, we chose 16 commits for hardware-based
energy measurement (highlighted in red boxes along the x-axis
in Figure 5). The SHAs for these commits are:

• CarTrack: 2222255 and b77d9b2.
• Inventario: e60848f, 56af7e2, 5b36854, 5a6af9e,
3479dee, 6a48c89, 6d6c717, and 273890a.

• Planner: bc1a801, 6319599, 5e97690, ed78820,
97d0057, and 39714d2.

b) Commit Instrumentation: To execute each commit on
iGreenMiner, we had to manually configure the dependencies
of each commit, especially older commits that rely on obsolete
dependencies. This instrumentation required instrumenting the
UI navigations and authentications in the apps to override
business rules and methods such that all SQLite operation
methods would execute within a single test-case execution.
For instrumentation, we chose 104 iterations for the loops
and UI events having SQLite operations because this is where
E-factor starts to noticeably increase (Figure 4). It was also
unrealistic to measure for more than 104 iterations, because at

●

●

● ● ●

●●

●●

●

●●

●

●●

●

0.007

1

148.413

22026.466

10^0 10^1 10^2 10^3 10^4 10^5 10^6 10^7
Number of iterations.

E
fa

ct
or

 (
Jo

ul
es

)

App Categories Entertainment Healthcare Uncategorized Utility

Fig. 4: The E-factor values of each app category. The range 100–107 is the number of times that each app may execute its
SQLite operations during runtime.

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ●

● ● ●

● ●

Planner

Inventario−seguro

CarTrack−Tech

ec
3f

e4
8

5b
48

f3
0

bc
1a

80
1

63
19

59
9

5e
97

69
0

ed
78

82
0

52
9c

4b
b

97
d0

05
7

39
71

4d
2

dd
70

60
9

f6
76

8c
1

9e
55

43
d

a8
a6

51
7

9f
f3

8e
c

ac
fe

14
9

ca
83

fe
a

35
da

f2
4

b0
26

64
b

fd
94

f5
5

27
29

43
2

96
0c

1a
c

77
be

df
1

a2
e8

b1
0

d4
9d

2e
7

2c
df

3f
b

76
e6

4b
0

77
72

e0
6

f8
d3

6e
8

ca
f3

09
d

3e
15

94
2

92
eb

46
4

3b
b6

29
5

e3
e9

35
6

af
66

ba
1

45
a8

39
c

00
a6

83
9

65
3d

5c
0

72
b1

33
c

e7
b8

30
3

2c
30

29
0

61
3e

c6
9

3e
91

79
1

ff4
eb

f8
bc

f4
f9

1
36

9b
e6

2
27

ab
a3

0
73

9f
d4

7
9e

9b
91

0
23

0f
d2

8
a2

1a
b1

b
fe

5e
51

5
1e

71
8a

9
2a

f0
c1

d
98

dc
70

d
64

ffd
f2

fc
20

33
5

92
d0

67
b

2a
86

08
5

ab
b2

a6
e

ae
a9

6e
2

24
01

e3
b

98
f4

ed
c

9f
46

41
7

3b
d9

c7
c

62
00

59
3

f6
f2

c7
5

5f
44

c3
b

b6
60

4b
0

0c
46

d5
a

46
b9

0f
a

9d
2d

33
c

e6
08

48
f

56
af

7e
2

bc
75

22
c

73
7c

8d
a

08
a0

fa
3

5b
36

85
4

5a
6a

f9
e

fa
74

d7
a

80
34

2d
b

be
81

7e
7

6d
6d

48
4

f2
08

0e
6

d3
5f

be
f

9f
4b

2e
3

ee
7d

53
b

a0
d4

06
b

34
79

de
e

6a
48

c8
9

9c
cd

41
4

da
50

d1
2

d5
a4

e6
c

c1
33

f0
a

d2
1f

e8
c

f8
56

06
d

af
e3

c1
b

6d
6c

71
7

27
38

90
a

66
e2

35
8

75
fb

b1
0

ed
c3

6b
a

e3
1e

8b
b

62
b9

da
7

56
28

cd
b

01
e3

aa
1

60
aa

b8
f

99
2f

f1
6

5d
4e

4b
8

62
2d

81
2

60
30

35
5

5b
be

c6
2

eb
19

30
c

0a
34

41
0

fe
06

c2
b

a0
77

27
7

66
88

10
d

b5
bc

bf
e

8c
2f

30
9

22
22

25
5

b7
7d

9b
2

fc
50

d1
0

cc
48

51
d

01
fc

ef
8

66
95

e4
9

90
01

21
b

fa
5a

04
1

94
de

d4
a

6a
a1

73
f

ef
68

78
a

81
f3

94
f

6f
44

35
4

c8
8c

1f
a

35
5f

5a
f

eb
12

a8
0

90
ba

b8
d

cf
ba

5c
8

0.007

1

148.413

22026.466

0.007

1

148.413

22026.466

0.007

1

148.413

22026.466

Apps commits

E
−

Fa
ct

or

Fig. 5: E-factor calculated from the commits of CarTrack, Inventario, and Planner. The commits are ordered left-to-right in
sequence over time (i.e., oldest to latest commit). Commits whose E-factor change over time are highlighted in a red box. The
number of iterations assumed for the SQLite usages that are in a loop is 104.

that point the highest energy consuming app, Inventario, takes
≈ 57 hours to execute.

c) Hardware Energy Measurement: To accurately mea-
sure the energy consumption of each commit, we ran the
16 instrumented versions on iGreenMiner multiple times. We
execute the versions that took less than an hour 10 times, and
the ones that took an hour or more 5 times. We use these
versions’ energy measurements and compare them with their
E-factor.

2) Results: To compare E-factor to hardware-based energy
measurements of the commits, we use the Spearman’s Rank
Correlation with the Bonferroni correction method [40]. The
Spearman’s Rank Correlation reports ρ = 0.60 with a p-value
< 0.05, indicating a significant correlation between E-factor
and hardware-based energy measurements of the commits.
Using Hopkin’s scale [41], ρ = 0.60 indicates that if a commit
has a lower E-factor than another, then it is more energy-
efficient due to the large positive correlation between E-
factor and energy measurements. Given this significant positive
correlation, E-factor is a reliable indicator for developers to
determine if their latest code change related to the SQLite
API usage would result in an increase or decrease in energy
consumption compared to a previous version of their app.

C. E-factor for Fine-grained Energy Review (RQ2)

For a given API usage in an app, if a developer discovers
that their app consumes too much energy, they may use E-
factor to compare the energy consumption of different methods
within the app that use that API. In this research question,
we investigate whether E-factor provides this information to
developers to help them focus their optimization efforts on
specific methods.

1) Setup: For this investigation, we consider methods of the
same set of apps that were used in RQ1: CarTrack, Inventario,
and Planner. We have already calculated the E-factor of these
apps and their methods. To collect the hardware-based energy
measurements (i.e., ground truth) of these methods though,
we need to first instrument the apps such that each method
executes in isolation.

a) Method Selection: CarTrack has 8 methods that
perform SQLite operations. For evaluation, we consider
CountryRepo.createCountryData() that performs an
insert in a loop. From the remaining methods that per-
form a single select, we could only instrument Country-
Repo.init(...) to execute in isolation. Inventario has
6 methods that perform SQLite operations. LoginVC-

.createDummyUsers() performs 5 insert operations and
1 select. mostrarVC.InsertRollos() and mostrarVC-

.InsertRegistros(..) perform insert in a loop and
1 select. VC.dummys() performs 1 insert and 1 select,
while DBUsuarioHelper.insert(..) and LoginVC.do-

Login(..) perform 1 select. We consider all these methods
in our evaluation. Planner has 5 methods that perform SQLite
operations. Out of the four methods that perform insert

and select once; we consider CanvasVC.createNew-

Canvas() and CanvasVC.loadCanvas(). Finally, we con-

sider CanvasVC.drawingDidChange(...) that performs a
select and an update in a loop.

b) App Instrumentation: We created 2 instrumented ver-
sions for CarTrack, 6 instrumented versions for Inventario,
and 3 instrumented versions for Planner. Similar to RQ1, each
instrumented version executes a method 104 times if it would
occur in a loop or a UI event, and once otherwise.

c) Hardware Energy Measurement: To collect the
ground truth, we executed each instrumented version 10 times
on iGreenMiner and collected their energy consumption
measurements. Since each instrumented version represents a
method, to compare a method’s energy consumption with
its E-factor, we compare the instrumented versions’ energy
measurements with the representative method’s E-factor value.

2) Results: Table IV compares E-factor to the ground
truth of each method. The table shows that E-factor re-
ports the highest values for the most energy consum-
ing methods in an app: CountryRepo.createCountry-

Data() in CarTrack, mostrarVC.InsertRegistros(..)

and DBUsuarioHelper.insert(..) in Inventario, and
CanvasVC.drawingDidChange(...) in Planner.

To determine the relationship between E-factor and
hardware-based energy measurements, we used the Spear-
man’s Rank Correlation with the Bonferroni correction
method. The Spearman’s Rank Correlation reports ρ = 0.59
with a p-value < 0.05, indicating a significant correlation
between E-factor and hardware-based energy measurements of
the evaluated methods. Using Hopkin’s scale [41], ρ = 0.59
indicates that if a method has a lower E-factor than another,
then it is more energy-efficient due to the large positive
correlation between E-factor and energy measurements. Given
this significant positive correlation, developers may reliably
use E-factor to compare the energy consumption of API usage
within methods in their code without executing them.

D. E-factor’s Automation Capability (RQ3)

In RQ3, we want to verify if EC calculates E-factor accu-
rately. To verify the accuracy, we compare EC with the manual
computation of E-factor.

1) Setup: For this evaluation, we used 12 apps (3 from
each category) with the minimum, average, and maximum
automatically calculated E-factor values:

• Entertainment: InstagramProjectIos, Instant, and Priyo
Movies

• Healthcare: HealthKitTest, iOS-App-Project, and careapp
• Utility: Dulce, Storage, and Planner
• Uncategorized: Tourus, ThisAppTeam, and HybridApp

To manually compute E-factor (i.e., ground truth), we first
traversed through the code files of each app. We then identified
method-to-API mappings that are reachable to execute during
runtime.

2) Results: To compare the automatically calculated EC
E-factor values with the manually calculated E-factor, we
compute the mean absolute percentage error (MAPE) [42]

TABLE IV: Comparing E-factor with hardware-based energy measurements for methods from real-world apps. The number
of iterations assumed for the SQLite usages that are in a loop is 104.

App Method Operation Ground Truth (joules) E-factor (joules)

CarTrack CountryRepo.createCountryData() insert* 62.27 22.2504
CarTrack CountryRepo.init(...) 1 select 36.93 0.0002
Inventario VC.dummys() 1 insert + 1 select 4.03 0.0027
Inventario DBUsuarioHelper.insert(..) 1 select 2.85 0.0002
Inventario LoginVC.createDummyUsers() 5 insert + 1 select 3.25 0.0124
Inventario LoginVC.doLogin(..) 1 select 3.37 0.0002
Inventario mostrarVC.InsertRegistros(..) insert* + 1 select 8446.95 22.2504
Inventario mostrarVC.InsertRollos() insert* + 1 select 3899.09 22.2504
Planner CanvasVC.createNewCanvas() 1 insert 1.63 0.0025
Planner CanvasVC.loadCanvas() 1 select 1.74 0.0002
Planner CanvasVC.drawingDidChange(...) update* + select* 11.30 27.4114

between both. MAPE shows that the percentage error in E-
factor values is 16.84%, indicating that EC calculates E-
factor of real-world apps within 20% of the mean absolute
error margin. This margin is acceptable because, in energy
estimation models, MAPE may vary from 5% to 1,000%
depending on the number of apps used to train the model [9].

To investigate the reason behind the error, we compare the
manually detected method-to-API mappings with EC detected
mappings. Upon this investigation, we found that EC identified
the mappings with a precision of 0.91 and a recall of 0.84
with an F1 score of 0.87. These measurements show that EC
is less likely to provide false positives but may miss some true
positives.

Upon further investigation, we have also identified the
following reasons for the occurrence of false positives (i.e.,
reporting a mapping that does not exist) and false negatives
(i.e., not reporting a mapping that exists):

• EC could not identify UI actions in input apps if
the responsible action implements a method other than
tapGesture or onClick from the Swift UI framework.

• Some identified execution paths from the CG are infea-
sible because they do not execute at runtime.

• The underlying framework that generates the CG
(SWAN) does not support recursion or Swift structs.

V. RELATED WORK

In this section, we briefly discuss prior work that is closely
related to our approach in terms of methodology and results.

Lyu et al. [43] empirically investigated the affect of SQL
anti-patterns on the energy consumption of smartphone apps
and discovered that SQL operations performed in a loop
may increase an app’s energy consumption considerably, and
suggest that developers should use join SQL queries instead
of loops when possible. Their work, however, is a recommen-
dation model for SQL usage, unlike our work that estimates
the energy consumption of any API’s usage. Hao et al. [8]
used static analysis to provide accurate energy measurements
at line-level granularity. However, their presented approach
requires an app’s runtime information and the target smart-
phone components’ energy profile from its manufacturers.
It is impractical to acquire a manufacturer’s built energy
profile as it could not be possible when the owner holds

proprietary rights over their components, such as Apple Inc.
On the other hand, our approach does not require any runtime
information or test case execution, and acquiring the energy
profile in our case is straightforward because anyone owning a
smartphone and an energy measurement instrument can obtain
their selected API’s energy profile.

Li et al. [18] empirically investigated 405 real-world An-
droid apps and found some interesting facts about API usage’s
energy consumption in smartphone apps. They discovered that
API events consume 85% of the energy in an app compared
to developer-written instructions (e.g., branch or arithmetic
instructions). They also discovered that SQLite queries are
the third most energy-consuming factor in apps following
Network and Camera related operations. This finding signifies
the importance of API usage’s energy estimation in general
and SQLite usage in specific. Finally, they discovered that
operations in a loop represent 41.1% (average) of an app’s
energy consumption when in a non-idle state. Moreover, loops
that use an API may consume 6–41% more energy than
loops that do not use an API. This finding further signifies
the importance of estimating the energy consumption of API
usages in loops and UI events.

Similar to our work, Jabbarvand et al. [44] focus on
measuring the relative energy consumption of the apps to
rank different apps by energy cost. However, their approach
involves dynamic analysis and it executes test cases, whereas
ours does not require any runtime information, thus it relieves
app-developers from the burden of test case execution.

Hasan et al. [45], Oliveira et al. [46], and Pereira et al. [47],
[48] use static analysis and profile the energy consumption of
the Java Collections API to help developers implement the
most energy-efficient collection in their code. However, we
use static analysis and energy profiles differently. Instead of
optimizing a developer’s code, we aim to provide developers
with a perspective on how expensive, in terms of energy
consumption, the methods or a version of their app could
become during runtime.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our
results and how we addressed them.

A. Construct Validity

To find call sites that use SQLite queries, we construct a
CG using CHA [33]. There are many other CG construction
algorithms such as RTA [49] and XTA [50] that are faster
than CHA, and each of these algorithms may yield differ-
ent results for E-factor. However, we have chosen CHA to
over-approximate the calculated energy estimates i.e., provide
developers with maximum possible energy consumption.

For hardware-based energy measurements, we used iGreen-
Miner that supports iPhone 11 running iOS 13.4.1. However,
a different smartphone device and operating system may yield
a different energy profile for the SQLite API. Therefore,
our energy profile and results may not generalize over all
smartphone platforms and devices that run them.

B. Internal Validity

To measure the energy profile of the SQLite API, we
pre-populated the DB records. However, our DB records
may not represent real-world scenario because we keep the
initial database empty each time before executing the insert

benchmarks and pre-populate 107 records before executing the
select and update benchmarks. Having a different number
of records affects the runtime performance of SQLite differ-
ently [51] and realistically, users perform SQLite operations
on a variable number of records. For better SQLite energy
profiling, future work may adopt parallelization to run multiple
instances of a DB on various phones, where each DB will
have a random number of records, columns, and indexes.
Regardless, we believe that the relative difference between
insert, select, and update may stay consistent when a
DB has the same structure and number of records to start with.
However, this claim requires an empirical evaluation that is out
of the scope of this paper.

We have designed our approach to consider only two usage-
contexts for SQLite operations: those that occur inside a loop
and those that occur outside of it. However, SQLite operations
may occur in many other contexts, such as inside a branch
condition or an asynchronous thread. In this study, we assume
that all branches execute and we do not consider all other
possible contexts. Therefore, we are unable to provide a best-
case or even an average-case energy estimate. Instead, we
provide worst-case estimates only.

The SIL files that we analyze represent the developer’s code
only, and therefore our E-factor values are confined to the
developer’s code. We do not calculate the E-factor of third-
party libraries on which an app may depend. However, this
can be done by generating and analyzing the SIL files for the
external libraries. Nonetheless, this is out of the scope of this
paper, and we leave it for future work.

In Table IV, the E-factor value of CanvasVC.drawing-

DidChange(...), in which two different SQLite operations
in a loop run in combination, is larger than the ground-truth
value. This inaccuracy might occur because we had separately
profiled the energy consumption of update and select, and
we never profiled their combinatorial effect. Operations, when
executed in combination, may follow several architecture-level

optimizations. Therefore, for more accurate E-factor values,
different operations combinations should also be profiled.

C. External Validity

Our SQLite API energy profile and results are relevant to
apps built for iOS 13.4.1. To claim the generalization of our
results over all iOS apps, the energy profile has to be obtained
using other iOS versions.

Our results are limited to the Swift SQLite API, which
exploits the processing subsystem of a smartphone. Exploring
additional APIs that use other energy-extensive subsystems
(i.e., networking, location, and graphics) is out of the scope
of this paper. Nevertheless, our work is a foundation for API-
usage energy estimation and facilitates the evaluation of other
APIs by providing a generic step-wise methodology.

E-factor provides the API usage energy estimates while
assuming that the API use will execute for a range of iterations.
Future work may better estimate the runtime iterations of
loops through static analysis techniques that use abstract
interpretation [52] or path dependency automation [53].

VII. CONCLUSION

App developers use hardware-based measurement tools
or software-based estimation models to measure their apps’
energy consumption. However, the current hardware and
software-based measurement and estimation techniques are
cumbersome because they require developers to own a smart-
phone and generate and execute test cases. As a solution, in
this paper, we have proposed a static-analysis-based approach
that can estimate the energy consumption (E-factor) of API
usage in an app without the need to generate and execute
test cases. We evaluate our technique on real-world apps
that use the SQLite API and find out that E-factor is a
good estimator to compare the relative energy consumption
of API use between the versions of an app and within the
methods of an app. Our proposed approach enables energy
estimates to be made at compile time. Additionally, our
approach provides an opportunity for integration with existing
Integrated Development Environments (IDE)s or Continuous
Integration/Continuous Deployment (CI/CD) pipelines, pro-
viding automated energy testing as a part of the development
process. Such integration would reduce the costs associated
with energy testing and improve the overall development
process by identifying and fixing energy-inefficient code early
on in the development cycle. To improve the estimation of
E-factor, it is recommended to include energy profiles of
additional APIs in the computation. Therefore, we encourage
the research community to contribute to our public GitHub
repository [20] by adding more energy profiles.

ACKNOWLEDGEMENT

This research was supported by the Discovery Grant pro-
gram of Natural Sciences and Engineering Research Council
of Canada (NSERC) .

REFERENCES

[1] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile
app users complain about?” IEEE Software, vol. 32, no. 3, pp. 70–77,
2015.

[2] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software
energy consumption,” in Proceedings of the 11th Working Conference
on Mining Software Repositories, 2014, pp. 22–31.

[3] J. M. Hirst, J. R. Miller, B. A. Kaplan, and D. D. Reed, “Watts up? pro
ac power meter for automated energy recording,” 2013.

[4] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky, “Greenminer: A hardware based mining software
repositories software energy consumption framework,” in Proceedings of
the 11th Working Conference on Mining Software Repositories. ACM,
2014, pp. 12–21.

[5] X. Li, X. Zhang, K. Chen, and S. Feng, “Measurement and analysis
of energy consumption on android smartphones,” in 2014 4th IEEE
International conference on information science and technology. IEEE,
2014, pp. 242–245.

[6] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Software-based energy profiling of android apps: Simple,
efficient and reliable?” in 2017 IEEE 24th international conference on
software analysis, evolution and reengineering (SANER). IEEE, 2017,
pp. 103–114.

[7] G. Pinto and F. Castor, “Energy efficiency: a new concern for application
software developers,” Communications of the ACM, vol. 60, no. 12, pp.
68–75, 2017.

[8] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in 2013 35th
international conference on software engineering (ICSE). IEEE, 2013,
pp. 92–101.

[9] S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “Greenscaler:
training software energy models with automatic test generation,” Em-
pirical Software Engineering, vol. 24, no. 4, pp. 1649–1692, 2019.

[10] M. B. Kjærgaard and H. Blunck, “Unsupervised power profiling for
mobile devices,” in International Conference on Mobile and Ubiquitous
Systems: Computing, Networking, and Services. Springer, 2011, pp.
138–149.

[11] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mälardalen
wcet benchmarks: Past, present and future,” in 10th International Work-
shop on Worst-Case Execution Time Analysis (WCET 2010). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[12] T. Nolte, H. Hansson, and C. Norstrom, “Probabilistic worst-case
response-time analysis for the controller area network,” in The 9th IEEE
Real-Time and Embedded Technology and Applications Symposium,
2003. Proceedings. IEEE, 2003, pp. 200–207.

[13] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and R. Vannithamby,
“Smartphone energy drain in the wild: Analysis and implications,” in
Proceedings of the 2015 ACM Sigmetrics International Conference on
Measurement and Modeling of Computer Systems, ser. Sigmetrics ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
151–164. [Online]. Available: https://doi.org/10.1145/2745844.2745875

[14] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software testing, verification and reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[15] L. C. Briand, “A critical analysis of empirical research in software
testing,” in First International Symposium on Empirical Software En-
gineering and Measurement (ESEM 2007). IEEE, 2007, pp. 1–8.

[16] S. McMaster and A. M. Memon, “An extensible heuristic-based frame-
work for gui test case maintenance,” in 2009 International Conference
on Software Testing, Verification, and Validation Workshops. IEEE,
2009, pp. 251–254.

[17] M. Mirzaaghaei, F. Pastore, and M. Pezze, “Automatically repairing test
cases for evolving method declarations,” in 2010 IEEE International
Conference on Software Maintenance. IEEE, 2010, pp. 1–5.

[18] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study of the en-
ergy consumption of android applications,” in 2014 IEEE International
Conference on Software Maintenance and Evolution. IEEE, 2014, pp.
121–130.

[19] AppleInc., “What’s new in energy debugging,” 2018. [Online]. Avail-
able: https://developer.apple.com/videos/play/wwdc2018/228/?time=265

[20] A. A. Bangash, “Sqlite energy profiles with benchmarks, and e-factor
calculator,” Mar 2023. [Online]. Available: https://zenodo.org/record/
7262615

[21] A. A. Bangash, D. Tiganov, K. Ali, and A. Hindle, “Energy
efficient guidelines for ios core location framework,” in Proceedings
of the 2021 International Conference on Software Maintenance and
Evolution (ICSME), 2021, inproceedings, pp. 1–12. [Online]. Available:
http://softwareprocess.ca/pubs/bangash2021ICSME-igreenminer.pdf

[22] M. Solutions, “High voltage power monitor,” 2021. [Online]. Available:
https://www.msoon.com/

[23] AppleInc., “Apple’s integrated development environment (ide),” 2022.
[Online]. Available: https://developer.apple.com/xcode/

[24] A. Puvvala, A. Dutta, R. Roy, and P. Seetharaman, “Mobile app
developers’ platform choice model,” in 2016 49th Hawaii International
Conference on System Sciences (HICSS). IEEE, 2016, pp. 5721–5730.

[25] M. Fitzgerald, “Android vs. ios app development: Which is the better
choice for your business in 2019?” Oct 2019. [Online]. Available:
https://bit.ly/3nbOCkS

[26] M. H. Goadrich and M. P. Rogers, “Smart smartphone development: ios
versus android,” in Proceedings of the 42nd ACM technical symposium
on Computer science education, 2011, pp. 607–612.

[27] D. R. Hipp, “Sqlite docs,” 2000. [Online]. Available: https://www.
sqlite.org/about.html

[28] E. Noei, F. Zhang, and Y. Zou, “Too many user-reviews! what should app
developers look at first?” IEEE Transactions on Software Engineering,
vol. 47, no. 2, pp. 367–378, 2019.

[29] SQLite, “Features of sqlite,” 2022. [Online]. Available: https:
//www.sqlite.org/features.html

[30] S. Celis, “Sqlite swift wrapper,” 2022. [Online]. Available: https:
//github.com/stephencelis/SQLite.swift

[31] SQLite, “Well-known users of sqlite,” 2022. [Online]. Available:
https://www.sqlite.org/famous.html

[32] AndroidDoc, “Save data in a local database using room,” 2022. [Online].
Available: https://developer.android.com/training/data-storage/room

[33] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented
programs using static class hierarchy analysis,” in European Conference
on Object-Oriented Programming. Springer, 1995, pp. 77–101.

[34] D. Tiganov, J. Cho, K. Ali, and J. Dolby, SWAN: A Static
Analysis Framework for Swift. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1640–1644. [Online]. Available:
https://doi.org/10.1145/3368089.3417924

[35] MicrosoftCorp., “A code hosting platform for version control and
collaboration.” 2022. [Online]. Available: https://github.com/

[36] R. Correia, “Car track tech challenge app,” 2021. [Online]. Available:
https://github.com/ricardo-correia/CartrackTechChallenge

[37] J. Margarita, “Inventario seguro app,” 2021. [Online]. Available:
https://github.com/ProyectoIntegrador2018/inventario seguro

[38] A. Clare, “Planner app,” 2021. [Online]. Available: https://github.com/
clare228/Planner

[39] S. Romansky and A. Hindle, “On improving green mining for energy-
aware software analysis,” in Proceedings of 24th Annual International
Conference on Computer Science and Software Engineering, 2014, pp.
234–245.

[40] J. H. Zar, “Spearman rank correlation,” Encyclopedia of biostatistics,
vol. 7, 2005.

[41] W. G. Hopkins, “A new view of statistics,” 2002.
[42] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean

absolute percentage error for regression models,” Neurocomputing, vol.
192, pp. 38–48, 2016.

[43] Y. Lyu, A. Alotaibi, and W. G. Halfond, “Quantifying the performance
impact of sql antipatterns on mobile applications,” in 2019 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2019, pp. 53–64.

[44] R. J. Behrouz, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann,
“Ecodroid: An approach for energy-based ranking of android apps,” in
2015 IEEE/ACM 4th International Workshop on Green and Sustainable
Software. IEEE, 2015, pp. 8–14.

[45] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,
“Energy profiles of java collections classes,” in Proceedings of the 38th
International Conference on Software Engineering. ACM, 2016, pp.
225–236.

[46] W. Oliveira, R. Oliveira, F. Castor, G. Pinto, and J. P. Fernandes, “Im-
proving energy-efficiency by recommending java collections,” Empirical
Software Engineering, vol. 26, no. 3, pp. 1–45, 2021.

[47] R. Pereira, P. Simão, J. Cunha, and J. a. Saraiva, “Jstanley:
Placing a green thumb on java collections,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated Software

Engineering, ser. ASE ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 856–859. [Online]. Available: https:
//doi-org.login.ezproxy.library.ualberta.ca/10.1145/3238147.3240473

[48] L. Cruz and R. Abreu, “Performance-based guidelines for energy effi-
cient mobile applications,” in 2017 IEEE/ACM 4th International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft).
IEEE, 2017, pp. 46–57.

[49] D. F. Bacon and P. F. Sweeney, “Fast static analysis of c++ virtual
function calls,” in Proceedings of the 11th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
1996, pp. 324–341.

[50] F. Tip and J. Palsberg, “Scalable propagation-based call graph construc-
tion algorithms,” in Proceedings of the 15th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
2000, pp. 281–293.

[51] M. J. Carey and D. Kossmann, “On saying “enough already!” in
sql,” SIGMOD Rec., vol. 26, no. 2, p. 219–230, jun 1997. [Online].
Available: https://doi.org/10.1145/253262.253302

[52] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel, “A fast and
precise static loop analysis based on abstract interpretation, program
slicing and polytope models,” in 2009 International Symposium on Code
Generation and Optimization. IEEE, 2009, pp. 136–146.

[53] X. Xiaofei, “Static loop analysis and its applications,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016, pp. 1130–1132.

