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Abstract—Various studies have empirically shown that the majority of Java and Android applications misuse cryptographic libraries,
causing devastating breaches of data security. It is crucial to detect such misuses early in the development process. To detect
cryptography misuses, one must define secure uses first, a process mastered primarily by cryptography experts but not by developers.
In this paper, we present CRYSL, a specification language for bridging the cognitive gap between cryptography experts and developers.
CRYSL enables cryptography experts to specify the secure usage of the cryptographic libraries they provide. We have implemented a
compiler that translates such CRYSL specification into a context-sensitive and flow-sensitive demand-driven static analysis. The
analysis then helps developers by automatically checking a given Java or Android app for compliance with the CRYSL-encoded rules.
We have designed an extensive CRYSL rule set for the Java Cryptography Architecture (JCA), and empirically evaluated it by analyzing
10,000 current Android apps and all 204,788 current Java software artefacts on Maven Central. Our results show that misuse of
cryptographic APlIs is still widespread, with 95% of apps and 63% of Maven artefacts containing at least one misuse. Our easily
extensible CRYSL rule set covers more violations than previous special-purpose tools that contain hard-coded rules, while still offering
a more precise analysis.

Index Terms—cryptography, domain-specific language, static analysis.
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1 INTRODUCTION

Digital devices are increasingly storing sensitive data,
which is often protected using cryptography. However, de-
velopers must not only use secure cryptographic algorithms,
but also securely integrate such algorithms into their code.
Unfortunately, prior studies suggest that this is rarely the
case. Lazar et al. [30] examined 269 published cryptography-
related vulnerabilities. They found that 223 are caused by
developers misusing a security library while only 46 result
from faulty library implementations. Egele et al. [18] stat-
ically analyzed 11,748 Android apps using cryptography-
related application programming interfaces (Crypto APlIs)
and found 88% of them violated at least one basic cryptog-
raphy rule. Chatzikonstantinou et al. [16] reached a similar
conclusion by analyzing apps manually and dynamically.
In 2017, VeraCode listed insecure uses of cryptography as
the second-most prevalent application-security issue right
after information leakage [15]. Such pervasive insecure use
of Crypto APIs leads to devastating vulnerabilities such as
data breaches in a large number of applications. Rasthofer
et al. [42] showed that virtually all smartphone apps that rely
on cloud services use hard-coded keys. A simple decompi-
lation gives adversaries access to those keys and to all data
that these apps store in the cloud.

Nadi et al. [35] were the first to investigate why de-
velopers often struggle to use Crypto APIs. The authors
conducted four studies, two of which survey Java devel-
opers familiar with the Java Crypto APIs. The majority
of participants (65%) found their respective Crypto APIs
hard to use. When asked why, participants mentioned the
API level of abstraction, insufficient documentation without

examples, and an API design that makes it difficult to
understand how to properly use the API. A potential long-
term solution is to redesign the APIs such that they provide
an easy-to-use interface for developers that is secure by
default. However, it remains crucial to detect and fix the
existing insecure API uses. When asked about what would
simplify their API usage, participants wished they had tools
that help them automatically detect misuses and suggest
possible fixes [35]. Unfortunately, approaches based solely
on specification inference and anomaly detection [47] are
not viable for Crypto APIs, because—as elaborated above—
most uses of Crypto APIs are insecure [41]].

Previous work has tried to detect misuses of Crypto APIs
through static analysis. While this step is in the right di-
rection, existing approaches are insufficient for several rea-
sons. First, these approaches implement mostly lightweight
syntactic checks, which yield fast analysis times at the cost
of missing false negatives. Therefore, such analyses fail to
warn about many insecure (especially non-trivial) uses of
cryptography. For instance, applications using password-
based encryption commonly do not clear passwords from
heap memory and instead rely on garbage collection to
free the respective memory space. Moreover, existing tools
cannot easily be extended to cover those more complex sce-
narios; instead they have hard-coded cryptography-specific
usage rules. The Java Cryptography Architecture (JCA),
the primary cryptography API for Java applications [35],
offers a plugin design that enables different providers to
offer different crypto implementations through the same
API, often imposing slightly different usage requirements
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on their clients. Hard-coded rules can hardly reflect this
diversity.

In this paper, we present CRYSL, a definition language
that enables cryptography experts to specify the secure
usage of their Crypto APIs in a lightweight special-purpose
syntax. CRYSL is meant to serve as a building block for
different kinds of tool support, including documentation,
patch, or use-case-based code generation as well as program
analysis. In this work, we further present one such tool,
namely COGNICRYPTsysr, a CRYSL compiler that parses
and type-checks CRYSL rules and translates them into an
efficient, yet precise flow-sensitive and context-sensitive
static data-flow analysis. The analysis automatically checks
a given Java or Android app for compliance with the en-
coded CRYSL rules. CRYSL was specifically designed for
(and with the help of) cryptography experts. Our approach
goes beyond methods that are useful for general validation
of API usage (e.g., typestate analysis [3}[10},[11}136] and data-
flow checks [2, [6]) by enabling the expression of domain-
specific constraints related to cryptographic algorithms and
their parameters.

To evaluate CRYSL, we built the most comprehensive
rule set available for the JCA classes and interfaces to date,
and encoded it in CRYSL. We then used the generated static
analysis COGNICRYPTsasr to conduct two studies. First,
we scan 10,000 Android apps. We have also modelled the
existing hard-coded rules by Egele et al. [18] in CRYSL and
compared the findings of the generated static analysis to
those of COGNICRYPTs,gr for the 10,000 Android apps. Our
more comprehensive rule set reports 3x more violations,
most of which are true warnings. With such comprehensive
rules, COGNICRYPTg,sr finds at least one misuse in 95%
of the apps. COGNICRYPTs,sr is also highly efficient: for
more than 75% of the apps, the analysis finishes in under
3 minutes per app, where most of the time is spent in
Android-specific call graph construction.

In the second study, we apply COGNICRYPTsxsr to all
204,788 software artefacts on Maven Central, the world’s
largest Java code repository, and present the first compre-
hensive study of misuses of crypto APIs in Java. This study
facilitates an investigation into whether there is a difference
between average developers for Java and Android in terms
of how securely they use cryptographic APIs. We find this
matter worthy of investigation as we would assume regular
Java code to contain significantly fewer misuses due to the
relative maturity of Java as a language and breadth of appli-
cation fields. Across all analyzed artefacts, COGNICRYPTssr
finds 24,349 cryptography misuses in 5,712 Java artefacts.
More than 63% of all artefacts that use the JCA contain at
least one misuse. We, therefore, conclude that Java code is
indeed less insecure, but overall still not secure.

In summary, this paper presents the following contribu-
tions:

o We introduce CRYSL, a definition language to specify
correct usages of Crypto APIs.

e We encode a comprehensive specification of correct
usages of the JCA in CRYSL.

e We present a CRYSL compiler that translates CRYSL
rules into a static analysis to find violations in a given
Java or Android app.

2
1 SecretKeyGenerator kG =
KeyGenerator.getInstance ("AES");
2 kG.init (128);
3 SecretKey cipherKey = kG.generateKey();
4
5 String plaintextMSG = getMessage () ;
6 Cipher ciph = Cipher.getInstance ("AES/GCM") ;
7 ciph.init (Cipher.ENCRYPT_MODE, cipherKey) ;
8 byte[] cipherText =
ciph.doFinal (plaintextMSG.getBytes ("UTE-8")) ;
Fig. 1. An example illustrating the use of

javax.crypto.KeyGenerator to implement data encryption in
Java.

e We empirically evaluate COGNICRYPTsysr on 10,000
Android apps and all Maven Central software artefacts
and, based on the results, draw conclusions on the state
of cryptographic application security in Android and
Java.

We have integrated COGNICRYPTsusr into the Eclipse-
based crypto-API assistant COGNICRYPT [27] that, among
other things, continiuously checks JCA-related code for
misuses through static analyses. We replaced COG-
NICRYPT’s former static-analysis component with COG-
NICRYPTgagr. To facilitate external contributions, we have
also open-sourced our implementation and artefacts on
GitHub. COGNICRYPTsasr is available at https://github.
com/CROSSINGTUD/CryptoAnalysis. The latest version
of the CRYSL rules for the JCA can be accessed at https://
github.com/CROSSINGTUD/Crypto-API-Rules. This pa-
per is based on a conference paper [28] published at the Eu-
ropean Conference on Object-Oriented Programming 2018.

2 AN EXAMPLE OF A SECURE USAGE OF
CRYPTO APIs

Throughout the paper, we will use the code example in
Figure [I to motivate the language features in CRYSL. The
code in this figure constitutes an API usage that accord-
ing to the current state of cryptography research can be
considered secure. Lines generate a 128-bit secret key
to use with the encryption algorithm AES. Lines 5H7] use
that key to initialize a Java Cipher object that encrypts
plaintextMSG. Since AES encrypts plaintext block by
block, it must be configured to use one of several modes of
operation. The mode of operation determines how to encrypt
a block based on the encryption of the preceding block(s).
Line |6 configures Cipher to use the Galois/Counter Mode
(GcM) of operation [33].

Although the code example may look straightforward,
a number of subtle alterations to the code would render
the encryption non-functional or even insecure. First, both
KeyGenerator and Cipher only support a limited choice
of encryption algorithms. If the developer passes an unsup-
ported algorithm to either getInstance () method, the
respective line will throw a runtime exception. Similarly, the
design of the APIs separates the classes for key generation
and encryption. Therefore, the developer needs to make
sure they pass the same algorithm (here "AES") to the
getInstance () methods of KeyGenerator and Cipher.
If the developer does not configure the algorithms as such,
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the generated key will not fit the encryption algorithm, and
the encryption will fail by throwing a runtime exception.
None of the existing tools discussed in Section are
capable of detecting such functional misuses. Moreover,
some supported algorithms are no longer considered secure
(e.g., DES or AES/ECB [21])). If the developer selects such an
algorithm, the program will still run to completion, but the
resulting encryption could easily be broken by attackers. To
make things worse, the JCA, the most popular API, offers
the insecure ECB mode by default (i.e., when developers
request only "AES" without specifying a mode of operation
explicitly).

To use Crypto APIs properly, developers generally have
to take into consideration two dimensions of correctness:
(1) the functional correctness that allows the program to
run and terminate successfully and (2) the provided secu-
rity guarantees. Prior empirical studies have shown that
developers, for instance by looking for code examples on
web portals such as StackOverflow [20], frequently succeed
in obtaining functionally correct code. However, they often
fail to obtain a secure use of Crypto APlIs, primarily because
most code examples on those web portals provide “solu-
tions” that themselves are insecure [20].

3 CRYSL SYNTAX

As we discuss in Section mining API properties for
Crypto APlIs is extremely challenging, if possible at all, due
to the overwhelming number of misuses one finds in actual
applications. Hence, instead of relying on the security of
existing usages and examples, we here follow an approach
in which cryptography experts define correct API usages
manually in a special-purpose language, CRYSL. In this
section, we give an overview of the CRYSL syntax elements.
A formal treatment of the CRYSL semantics is presented in
Section @

3.1 Design Decisions Behind CRYSL

We designed CRYSL specifically with crypto experts in
mind, and in fact with the help of crypto experts. This
work was carried out in the context of a large collaborative
research center that involves more than a dozen research
groups involved in cryptography research. As a result of
the domain research conducted within this center, we made
the following design decisions when designing CRYSL.

White listing. During our domain analysis, we observed
that, for the given Crypto APIs, there are many ways
they can be misused, but only a few that correspond
to correct and secure usages. To obtain concise usage
specifications, we decided to design CRYSL to use
white listing in most places (i.e., defining secure uses
explicitly, while implicitly assuming all deviations from
this norm to be insecure).

Typestate and data flow. When reviewing potential mis-
uses, we observed that many of them are related to data
flows and typestate properties [54]. Such misuses occur
because developers call the wrong methods on the API
objects at hand, call them in an incorrect order or miss
to call the methods entirely. Data-flow properties are
important when reasoning about how certain data is
being used (e.g., passwords, keys or seed material).

3

String and integer constraints. In the crypto domain,
string and integer parameters are ubiquitously used to
select or parametrize specific cryptography algorithms.
Strings are widely used, because they are easily rec-
ognizable, configurable, and exchangeable. However,
specifying an incorrect string parameter may result
in the selection of an insecure algorithm or algorithm
combination. Many APIs also use strings for user cre-
dentials. Those credentials, passwords in particular,
should not be hard-coded into the program’s bytecode.
A precise specification of correct crypto uses must
therefore comprise constraints over string and integer
parameters.

Tool-independent semantics. We equipped CRYSL with a
tool-independent semantics (to be presented in Sec-
tion EI) In the future, those semantics will enable us
and others to build other or more effective tools for
working with CRYSL. For instance, in addition to the
static analysis the CRYSL compiler derives from the
semantics within this paper, we are currently working
on a dynamic checker to identify and mitigate CRYSL
violations at runtime. This tool will help us overcome
challenges posed by static analyses, as described in
Section Bl

Our desire to allow crypto experts to easily express secure
crypto uses also precludes us from using existing generic
definition languages such as Datalog. Such languages, or
minor extensions thereof, might have sufficient expressive
power. However, following discussions with crypto devel-
opers, we had to acknowledge that they are often unfamiliar
with those languages’ concepts. CRYSL thus deliberately
only includes concepts familiar to those developers, hence
supporting an easy understanding.

The resulting language is not, per se, limited to express-
ing usage constraints on cryptographic APIs. While there are
certain elements in CRYSL, such as the integer and String
constraints, that are more essential to cryptographic than
to other APIs, we do assume the language to be capable
of covering those other APIs as well. We nonetheless view
CRYSL (and COGNICRYPTsusr) as domain-specific because
we tailored them to the domain of cryptography through
an extensive domain analysis, which resulted in, among
other things, the aforementioned language elements. We
have, however, not conducted an in-depth investigation into
CRYSL’s applicability to other APIs of other domains and
leave this to future work.

Rules in CRYSL are split into multiple sections as a
means to follow the separation-of-concerns paradigm. This
way, required method calls are defined independently of
forbidden ones, constraints on an object may be specified
separately from assigning this object a role as method ar-
gument or return object of a method, and the correct order
of method calls is defined without interference from object
definitions or declarations of forbidden method calls. These
separations improve readability and, as described further
below, facilitate reuse of elements within a single rule. In
early discussions of CRYSL with domain experts, this design
was received positively. We next explain the individual
elements that a typical CRYSL rule comprises by means
of Figure 2| which shows an abbreviated CRYSL rule for

javax.crypto.KeyGenerator.
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3.2 Mandatory Sections in a CRYSL Rule

To provide simple and reusable constructs, a CRYSL rule is
defined on the level of individual classes. Therefore, the rule
starts off by stating the class that it is defined for.

In Figure |2, the OBJECTS section defines three objectsﬂ
to be used in later sections of the rule (e.g., the object
algorithm of type String). These objects are typically
used as parameters or return values in the EVENTS section.

The EVENTS section defines all methods that may con-
tribute to the successful use of a KeyGenerator ob-
ject, including two method event patterns (Lines .
The first pattern matches calls to getInstance (String
algorithm), but the second pattern actually matches calls
to two overloaded get Instance () methods:

e getInstance (String algorithm, Provider
provider)
e getInstance (String algorithm,

provider)

String

The first parameter of all three methods is a String object
whose value states the algorithm that the key should be gen-
erated for. This parameter is represented by the previously
defined algorithm object. Two of the getInstance ()
methods are overloaded with two parameters. Since we
do not need to specify the second parameter in either
method, we substitute it with an underscore that serves as
a placeholder in one combined pattern definition (Line [I8).
This concept of method event patterns is similar to point-
cuts in aspect-oriented programming languages such as
Aspect] [26]. For CRYSL, we resort to a more lightweight
and restricted syntax as we found full-fledged pointcuts
to be unnecessarily complex. Subsequently, the rule de-
fines patterns for the various init methods that set the
proper parameter values (e.g., keysize) and a generateKey
method that completes the key generation and returns the
generated key.

Line defines a usage pattern for KeyGenerator
using the keyword ORDER. The usage pattern is a regular
expression of method event patterns that are defined in
EVENTS. Although each method pattern defines a label
to simplify referencing related events (e.g., g1, 12, and
GenKey), it is tedious and error-prone to require listing
all those labels again in the ORDER section. Therefore,
CRYSL allows defining aggregates. An aggregate represents
a disjunction of multiple patterns by means of their labels.
Line 19| defines an aggregate Get Instance that groups the
two getInstance () patterns. Using aggregates, the usage
pattern for KeyGenerator reads: there must be exactly
one call to one of the get Instance () methods, optionally
followed by a call to one of the init () methods, and finally
a call to generateKey ().

Following the keyword CONSTRAINTS, Lines de-
fine the constraints for objects listed under OBJECTS and
used as parameters or return values in the EVENTS sec-
tion. In the abbreviated CRYSL rule in Figure [2] the first
constraint limits the value of algorithm to "AES" or
"Blowfish". For each algorithm, there is one constraint
that restricts the possible values of keysize.

1. As the example shows, in CRYSL, OBJECTS also comprise primi-
tive values.

9 SPEC javax.crypto.KeyGenerator
10

11 OBJECTS

12 java.lang.String algorithm;

13 int keySize;

14 javax.crypto.SecretKey key;

15

16 EVENTS

17 gl: getInstance(algorithm);

18 g2: getInstance (algorithm, _);

19 GetInstance := gl | g2;

20

21 il: init (keySize);

22 i2: init (keySize, _);

23 i3: init (_);

24 id4: init(_, _);

25 Init := il | 12 | i3 | i4;

26

27 GenKey: key = generateKey();

28

29 ORDER

30 GetInstance, Init?, GenKey

31

32 CONSTRAINTS

33 algorithm in {"AES", "Blowfish"};

34 algorithm in {"AES"} => keySize in {128, 192,
256} ;

35 algorithm in {"Blowfish"} => keySize in {128,
192, 256, 320, 384, 448};

36

37 ENSURES

38 generatedKey[key, algorithm];

Fig. 2. CRYSL rule for using javax.crypto.KeyGenerator.

39 SPEC javax.crypto.Cipher

40

41 OBJECTS

42 int encmode;

43 java.security.Key key;

44 java.lang.String transformation;
45

46

47 EVENTS

48 gl: getInstance (transformation);
49 e

50 il: init (encmode, key);

51

52

54 REQUIRES

55 generatedKey[key, alg(transformation)];
56

57 ENSURES

58 encrypted[cipherText, plainText];

Fig. 3. CRYSL rule for using javax.crypto.Cipher.

The ENSURES section is the final mandatory construct
in a CRYSL rule. It allows CRYSL to support rely/guar-
antee reasoning. The section specifies predicates to gov-
ern interactions between different classes. For example, a
Cipher object uses a key obtained from a KeyGenerator.
The ENSURES section specifies what a class guarantees,
presuming that the object is used properly. For example,
the KeyGenerator CRYSL rule in Figure 2| ends with the
definition of a predicate generatedKey with the generated
key object and its corresponding algorithm as parameters.
This predicate may be required (i.e., relied on) by the rule for
Cipher or other classes that make use of such a key through
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TABLE 1
Helper Functions in CRYSL.

Function Purpose

alg(transformation)
mode(transformation)
padding(transformation)

Extract algorithm /mode/padding
from transformation parameter
of Cipher.getInstance () call.

length(object) Retrieve length of object.
neverTypeOf(object, type) ~ Forbid object to be of type.
callTo(method) Require call to method.
noCallTo(method) Forbid call to method.

59 SPEC javax.crypto.spec.PBEKeySpec
60
61 OBJECTS

62 char[] pw;

63 byte[] salt;

64 int it;

65 int keylength;

66

67 EVENTS

68 create: PBEKeySpec (pw, salt, it, keylength);
69 clear: clearPassword();

70

71 FORBIDDEN

72 PBEKeySpec (char[]) => create;

73 PBEKeySpec (char[],byte[],int) => create;
74

75 ORDER

76 create, clear

77

78

79 ENSURES

80 keyspec[this,
81

82 NEGATES

83 keyspec[this, _]1;

keylength] after create;

Fig. 4. CRYSL rule for javax.crypto.spec.PBEKeySpec.

the optional element of the REQUIRES block as illustrated in
Figure 3|

To obtain the required expressiveness, we have further
enriched CRYSL with some simple built-in auxiliary func-
tions. For example, in Figure [3} the function alg extracts
the encryption algorithm from t ransformation (Line[55).
This function is necessary, because generatedKey expects
only the encryption algorithm as its second parameter, but
transformation optionally specifies also the mode of
operation and padding scheme (e.g., Line [f] in Figure [I).
For instance, alg would extract "AES" from "AES/GCM"
or from "AES/CBC/PKCS5Padding". Table [If lists all of
these functions. Note the last two helper functions callTo
and noCallTo may seem redundant to the ORDER and
FORBIDDEN (see Section sections because they appear
to fulfil the same purpose of requiring or forbidding certain
method calls. However, these two functions go beyond
that because they allow for the specification of conditional
forbidden and required methods.

3.3 Optional Sections in a CRYSL Rule

A CRYSL rule may contain optional sections that we show-
case through the CRYSL rule for PBEKeySpec. In Fig-
ure 4} the FORBIDDEN section specifies methods that must

5

not be called, because calling them is always insecure.
PBEKeySpec derives cryptographic keys from a user-given
password. For security reasons, it is recommended to use a
cryptographic salt for this operation. However, the construc-
tor PBEKeySpec (char[] password) does not allow for
a salt to be passed, and the implementation in the default
provider does not generate one. Therefore, this constructor
should not be called, and any call to it should be flagged.
Consequently, the CRYSL rule for PBEKeySpec lists it in the
FORBIDDEN section (Line [72). In the case of PBEKeySpec,
there is an alternative secure constructor (Line [68). CRYSL
allows one to specify an alternative method event pattern
using the arrow notation(=-) shown in Line Depending
on the tool support, these alternatives may either be used
for constructive error messages and documentation, or au-
tomated fix generation. With FORBIDDEN events, CRYSL’s
language design deviates a bit from its usual white-listing
approach. We made this choice deliberately to keep speci-
fications concise. Without explicit FORBIDDEN events, one
would have to simulate their effect by explicitly listing all
events defined on a given type except the one that ought to
be forbidden. This would significantly increase the size of
CRYSL specifications.

In general, predicates are generated for a particular
usage whenever it does not use any FORBIDDEN events,
its regular EVENTS follow the usage pattern defined in
the ORDER section, and if the usage fulfils all constraints
in the CONSTRAINTS section of its corresponding rule.
PBEKeySpec, however, deviates from that standard. The
class contains a constructor that receives a user-given pass-
word, but the method clearPassword () deletes that pass-
word later, making it no longer accessible to other objects
that might use the key-spec. Consequently, a PBEKeySpec
object fulfils its role after calling the constructor but only
until clearPassword () is called.

To model this usage precisely, CRYSL allows one to
specify a method-event pattern using the keyword after
(Line [80). Usually, a predicate is supposed to be generated,
when an object of the given type has successfully and fully
followed the call pattern given in its ORDER section. How-
ever, with the after keyword, a predicate is generated right
after the respective method is called. Furthermore, CRYSL
supports invalidating an existing predicate in the NEGATES
section (Line[83). The last call to be made on a PBEKeySpec
object is the call to clearPassword() (Line [76). Ad-
ditionally, the rule lists the predicate keySpec[this, _]
within the NEGATES block. Semantically, the negation of the
predicates means the following. A final event in the ORDER
pattern, in this case a call to clearPassword (), invalidates
the previously generated keyspec predicate(s) for this.
Section presents the formal semantics of predicates.

For reference, we provide the basic syntactic elements of
CRYSL and the full syntax in Figures[5|and [} respectively.

4 CRYSL FORMAL SEMANTICS

CRYSL may serve as a basis for multiple kinds of tool sup-
port. In this section, we, therefore, present a formal seman-
tics of the language that is tool-independent. For a discus-
sion of our CRYSL-based static analysis COGNICRYPTsas7,
we refer the reader to Section 5l
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METHOD :=
methname(PARAMETERS)

PARAMETERS :=
varname , PARAMETERS
varname

TYPES :=
QualifiedClassName , TYPES
TYPE

CONSTANTLIST :=
constant , CONSTANTLIST
constant

AGGREGATE :=
label | AGGREGATE
label ;

EVENT :=
AGGREGATE
label : METHOD

label : varname = METHOD A: B = C(D) — a single event with

label A consisting of method C, its
parameter D, and return object B

PREDICATE :=
predname(PARAMETERS)
predname(PARAMETERS) after EVENT

PREDICATES :=
PREDICATE ; PREDICATES

Fig. 5. Basic CRYSL syntax elements.

4.1 Basic Definitions

A CRYSL rule consists of several sections. The OBJECTS
section comprises a set of typed variable declarations V. In
the syntax in Figure[p] each declaration v € V is represented
by the syntax element TYPE varname. M is the set of all
resolved method signatures, where each signature includes
the method name and argument types. The EVENTS section
contains elements of the form (m,v), where m € M and
v € V*. We denote the set of all methods referenced in
EVENTS by M. The FORBIDDEN section lists a set of meth-
ods from M denoted by their signatures; forbidden events
cannot bind any variables. The ORDER section specifies the
usage pattern in terms of a regular expression of labels or
aggregates that are in M, i.e., over the defined EVENTS. We
express this regular expression formally by the equivalent
non-deterministic finite automaton (Q, M, ¢, g9, F') over the
alphabet M, where () is a set of states, qo is its initial state,
F is the set of accepting states, and 6 : Q@ x M — P(Q) is
the state transition function.

The CONSTRAINTS section is a subset of C := (V —
OUYV) — B (i.e., each constraint is a boolean function),
where the argument is itself a function that maps variable
names in V to objects in O or values with primitive types in
V.

A CRYSL rule is a tuple (7, F,A,C), where T is the
reference type specified by the SPEC keyword, 7 C M is
the set of forbidden events, A = (Q, M, 0, qo, F) € A is the
automaton induced by the regular expression of the ORDER
section, and C C C is the set of CONSTRAINTS that the rule
lists. We refer to the set of all CRYSL rules as SPEC.

Our formal definition of a CRYSL rule does not contain
the sections REQUIRES, ENSURES, and NEGATES. Those
sections reason about the interaction of predicates, whose
formal treatment we discuss in Section [4.2.2]

6
SPEC TYPE;
OBJECTS
OBJECTS :=
OBJECT ; OBJECTS A ; B—a list of objects A and B
OBJECT ; A — a list of the single object A
OBJECT :=
TYPE varname A B — object B of Java type A
EVENTS
EVENTS :=
EVENT ; EVENTS A ; B—a list of events A and B
EVENT ; A — a list of the single event A
FORBIDDEN
FMETHODS :=
FMETHOD ; FMETHODS A ; B—a list of forbidden A and B
FMETHOD ; A — a list of the single forbidden method A
FMETHOD :=

methname(TYPES) => label  A(B) => C — a forbidden method named A

with parameter of Type B and replacement C

ORDER
USAGEPATTERN :=

USAGEPATTERN , USAGEPATTERN
USAGEPATTERN | USAGEPATTERN
USAGEPATTERN ?
USAGEPATTERN *
USAGEPATTERN +
(USAGEPATTERN )
AGGREGATE

A, B— A followed by B
A|B—AorB

A? — Ais optional
A*— 0 or more As

A+ — 1 or more As

(A) — grouping

CONSTRAINTS
CONSTRAINTS :=
CONSTRAINT ; CONSTRAINTS
CONSTRAINT => CONSTRAINT
CONSTRAINT
CONSTRAINT :=
varname in { CONSTANTLIST }

A => B — A implies B

Ain {1,2} — A should be 1 or 2

REQUIRES
REQ_PREDICATES :=
PREDICATES

ENSURES
ENS_PREDICATES :=
PREDICATES

NEGATES
NEG_PREDICATES :=
PREDICATES

Fig. 6. CRYSL rule syntax in Extended Backus-Naur Form (EBNF) [7].

4.2 Runtime Semantics

Each CRYSL rule encodes usage constraints to be validated
for all runtime objects of the reference type T stated in its
SPEC section. We define the semantics of a CRYSL rule in
terms of an evaluation over a runtime program trace that
records all relevant runtime objects and values, as well as
all events specified within the rule.

Definition 1 (Event). Let O be the set of all runtime objects
and V the set of all primitive-typed runtime values. An event
is a tuple (m,e) € E of a method signature m € M and an
environment e (i.e., a mapping V.— O UV of the parameter
variable names to concrete runtime objects and values). If the
environment e holds a concrete object for the this value, then
it is called the event’s base object.

Definition 2 (Runtime Trace). A runtime trace 7 € E* is a
finite sequence of events Tq . . . Ty,

Definition 3 (Object Trace). For any 7 € E*, a subsequence
Tiy---Ti, 1s called an object trace if i1 < ... < i, and all base
objects of T;, are identical.
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sat’: E* x SPEC — B
[7°,(T°, F°,A°,C°)] — saty(7°, F°)
satd (1, A°)
satg(m°,C°)

A
A\

Fig. 7. The function sat® verifies an individual object trace for the object
0.

Lines in Figure [I| result in an object trace that has
two events:

(mo,{algorithm— "AES", this > Okg})
(ml, {algorithm — "AES",keySize — 128,
this — Ok:g})

where mg and m; are the signatures of the get Instance ()
and init () methods of the KeyGenerator class. For static
factory methods such as getInstance (), we assume that
this is bound to the returned object. We use oy, to denote
that the object o is bound to the variable kG at runtime.

The decision whether a runtime trace 7 satisfies a set of
CRYSL rules involves two steps. In the first step, individual
object traces are evaluated independently of one another.
Yet, different runtime objects may still interact with each
other. CRYSL rules capture this interaction by means of
rely /guarantee reasoning, implemented through predicates
that a rule ensures on a runtime object. These interactions
between different objects are checked against the specifi-
cation in a second step by considering the predicates they
require and ensure. We first discuss individual object traces
in more detail.

4.2.1 Individual Object Traces

The sections FORBIDDEN, ORDER and CONSTRAINTS are
evaluated on individual object traces. Figure [7] defines the
function sat® that is true if and only if a given trace 7° for
a runtime object o satisfies its CRYSL rule. This definition
of sat® ignores interactions with other object traces. We
will discuss later how such interactions are resolved. In
the following, we assume the trace 7° = 77, ..., 75, where

 Ins
19 = (mg,e?). To illustrate the computation, we will also
refer to our example from Figure [I|and the involved rules
of KeyGenerator (Figure ) and Cipher (Figure [3). The
function sat® is composed of three sub-functions:
42.1.1 Forbidden Events (sat%): Given a trace 7°
and a set of forbidden events F, sat® ensures that none of

the trace events is forbidden.

satG (10, F°) == /\

1=0...n

mg ¢ F°

The CRYSL rule for KeyGenerator does not list any
forbidden methods. Hence, sat’ trivially evaluates to true
for object kG in Figure

42.1.2 Order Errors (satl): The second function
checks that the trace object is used in compliance with
the specified usage pattern (i.e., all methods in the rule
are invoked in no other than the specified order). For-
mally, the sequence of method signatures of the object trace
m® = mg,...,my (ie., the projection onto the method

GenKey
start > ; //\
QGetInstance U Init U GenKey Q

Fig. 8. The state machine for the CRYSL rule in Figure [2| (without an
implicit error state).

signatures) must be an element of the language £(.A°) that
the automaton A° = (Q, M, 4, qo, F') of the ORDER section
induces. Therefore, it is

°,A%) :==m° € L(A?).

By definition of language containment, after the last ob-
served signature of the trace m?, the corresponding state
of the automaton must be an accepting state s € F'. This
definition ignores any variable bindings. They are evaluated
in the second step.

Figure[§|displays the automaton created for KeyGenerator
using the aggregate names as labels. State 0 is the initial
state, and state 3 is the only accepting state. Following the
code in Figure [I] for the object kG of type KeyGenerator,
the automaton transitions from state 0 to 1 at the call to
getInstance () (Line[I). With the calls to init () (Line[2)
and generateKey () (Line ), the automaton first moves
to state 2 and finally to state 3. Therefore, function sat§
evaluates to true for this example.

42.1.3 Constraints (sat2): The validity check of the
constraints ensures that all constraints of C are satisfied. This
check requires the sequence of environments (eg, ..., e%) of
the trace 7°. All objects that are bound to the variables along
the trace must satisfy the constraints of the rule.

)= N )

ceC2,i=0...n

satg (T

satd(r

To compute sat? for the KeyGenerator object kG at the
call to getInstance () in Line|l} only the first constraint
has to be checked. This is because the corresponding en-
vironment 4§ holds a value only for algorithm, and the
other two constraints reference other variable names. The
evaluation function c returns true if algorithm assumes
either *‘AES’’ or ‘‘Blowfish’’ as its value, which is
the case in Figure|[ll The computation of satg for Lines
works similarly.

4.2.2 Interaction of Object Traces

To define interactions between individual object traces, the
REQUIRES, ENSURES, and NEGATES sections allow individ-
ual CRYSL rules to reference one another. For a rule for one
object to hold at any given point in an execution trace, all
predicates that its REQUIRES section lists must have been
both previously ensured (by other specifications) and not
negated. Predicates are ensured (i.e., generated) and negated
(i.e., killed) by certain events. Formally, a predicate is an
element of P := {(name,args) | args € V*} (i.e., a pair
of a predicate name and a sequence of variable names).
Predicates are generated in specific states. Each CRYSL rule
induces a function G: S — P(P) that maps each state of its
automaton to the predicate(s) that the state generates.

The predicates listed in the ENSURES and NEGATES
sections may be followed by the term after n, where n
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is a method event pattern label or aggregate. The states that
follow the event or aggregate n in the automaton generate
the respective predicate. If the term after is not used for
a predicate, the final states of the automaton generate (or
negate) that predicate (i.e., we interpret it as after n, where
n is an event that leads to a final state).

In addition to states selected as predicate-generating,
the predicate is also ensured if the object resides in any
state that transitively follows the selected state, unless the
states are explicitly (de-)selected for the same predicate
within the NEGATES section. At any state that generates a
predicate, the event driving the automaton into this state
binds the variable names to the values that the specification
previously collected along its object trace.

Formally, an event n° = (m?, e°) € E of a rule r and for
an object o ensures a predicate p = (predName, args) € P on
the objects e € O if:

1) The method m?° of the event leads to a state s of the
automaton that generates the predicate p (i.e., p € G(s)).

2) The runtime trace of the event’s base object o satisfies
the function sat®.

3) All relevant REQUIRES predicates of the rule are satis-
fied at execution of event n°.

For the KeyGenerator object kG in Figure[T} a predicate
is generated at Line |Z| because (1) its automaton transi-
tions to its only predicate-generating state (state 3 of the
automaton in Figure 8), (2) sat® evaluates to true as previ-
ously shown for each subfunction and (3) the corresponding
CRYSL rule does not require any predicates.

5 DETECTING MISUSES OF CRYPTO APIs

To detect all possible rule violations, our tool COG-
NICRYPTs,sr approximates the evaluation function sat® us-
ing a static data-flow analysis. In a security context, it is
a requirement to detect as many misuses as possible. One
drawback is the potential for false warnings that originate
from over-approximations any static analysis requires. In
the following, we use the example in Figure [J] to illustrate
why and where approximations are required. We will show
later in our evaluation that, in practice, our analysis is highly
precise and that the chosen approximations rarely actually
lead to false warnings.

The code example in Figure [ implements a hashing
operation. By default, the code uses SHA-256. However,
if the condition optionl evaluates to true, MD5 is chosen
instead (Line [88). The CRYSL rule for MessageDigest,
displayed in Figure does not allow the usage of MD5
though, because it is no longer secure [21]].

The update operation is performed only on non-empty
input (Line [0T). Otherwise, the call to update () is skipped
and only the call to digest () is executed without any
input. A hash function used without any input does not
comply with the CRYSL rule for MessageDigest; it is most
likely a programming error as no content is being hashed.

To approximate sat%, the analysis must search for pos-
sible forbidden events by first constructing a call graph for
the whole program under analysis. It then iterates through
the graph to find calls to forbidden methods. Depending on
the precision of the call graph, the analysis may find calls to
forbidden methods that cannot be reached at runtime.

8
84 boolean optionl = isPrime (66); //some
non-trivial predicate returning false
85 byte[] input = "Message".getBytes ("UTF-8");
86
87 String alg = "SHA-256";
88 if (optionl) alg = "MD5S";
89 MessageDigest md =
MessageDigest.getInstance (alqg);
90
91 if (input.size() > 0) md.update (input);
92 byte[] digest = md.digest();
Fig. 9. An example illustrating the usage of
java.security.MessageDigest in Java.
93 SPEC java.security.MessageDigest
94
95 OBJECTS
96 java.lang.String algorithm;
97 byte[] input;
98 int offset;
99 int length;
100 byte[] hash;
101 .
102
103 EVENTS
104 gl: getInstance(algorithm);
105 g2: getInstance (algorithm, _);
106 Gets := gl | g2;
107 .
108 Updates := ...;
109
110 dl: output = digest();
111 d2: output = digest (input);
112 d3: digest (hash, offset, length);
113 Digests := dl | d2 | d3;
114
115 r: reset();
116
117 ORDER
118 Gets, (d2 | (Updates+, Digests)), (r, (d2 |
(Updates+, Digests))) *
119
120 CONSTRAINTS
121 algorithm in {"SHA-256", "SHA-384",
"SHA-512"};
122
123 ENSURES
124 digested[hash, ...];
125 digested[hash, input];

Fig. 10. CRYSL rule for java.security.MessageDigest.

The analysis represents each runtime object o by its
allocation site. In our example, allocation sites are new
expressions and calls to getInstance () that return an
object of a type for which a CRYSL rule exists. For each such
allocation site, the analysis approximates sat{ by first creat-
ing a finite-state machine. COGNICRYPTs,sr then evaluates
the state machine using a typestate analysis that abstracts
runtime traces by program paths. The typestate analysis
is path-insensitive, thus, at branch points, it assumes that
both sides of the branch may execute. In our contrived
example, this feature leads to a false positive: although the
condition in Line always evaluates to true, and the call to
update () is never actually skipped, the analysis considers
that this may happen, and thus reports a rule violation.

To approximate sat?, we have extended the typestate
analysis to also collect potential runtime values of variables
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along all program paths where an allocated object is used.
The constraint solver first filters out all irrelevant constraints.
A constraint is irrelevant if it refers to one or more variables
that the typestate analysis has not encountered. In Figure
the rule only includes one internal constraint—on variable
algorithm. If we add a new internal constraint to the rule
about the variable of fset, the constraint solver will filter
it out as irrelevant when analyzing the code in Figure [J]
because the only method this variable is associated with
(digest () labelled d3) is never called. The analysis distin-
guishes between never encountering a variable in the source
code and not being able to extract the values of a variable.
With the same rule and code snippet, if the analysis fails to
extract the value for algorithm, the constraint evaluates
to false. Collecting potential values of a variable over all
possible program paths of an allocation site may lead to
further imprecision. In our example, the analysis cannot
statically rule out that algorithm may be MD5. The rule
forbids the usage of MD5. Therefore, the analysis reports a
misuse.

Handling predicates in our analysis follows the formal
description very closely. If sat® evaluates to true for a given
allocation site, the analysis checks whether all required
predicates for the allocation site have been ensured earlier
in the program. In the trivial case, when no predicate is
required, the analysis immediately ensures the predicate
defined in the ENSURES section. The analysis constantly
maintains a list of all ensured predicates, including the state-
ments in the program that a given predicate can be ensured
for. If the allocation site under analysis requires predicates
from other allocation sites, the analysis consults the list
of ensured predicates and checks whether the required
predicate, with matching names and arguments, exists at the
given statement. If the analysis finds all required predicates,
it ensures the predicate(s) specified in the ENSURES section
of the rule.

6 IMPLEMENTATION

We have implemented the CRYSL compiler using Xtext [24],
an open-source framework for developing domain-specific
languages as well as the CRYSL-parameterizable static anal-
ysis COGNICRYPTsysr. We have further integrated COG-
NICRYPTsasr With COGNICRYPT [27], in which it replaces
the original code-analysis component.

6.1 CRYSL

Given the CRYSL grammar, Xtext provides a parser, type
checker, and syntax highlighter for the language. When
supplied with a type-safe CRYSL rule, Xtext outputs the
corresponding AST, which is then used to generate the
required static analysis.

We developed CRYSL rules for all relevant JCA classes
in an iterative process. That is, we first worked through
the JCA documentation to produce a set of rules and
then refined these rules through selective discussions with
cryptographers and searching security blogs and forums.
In total, we have devised 23 rules covering classes rang-
ing from key handling to digital signing. All rules define
a usage pattern. Some classes (e.g. IvParameterSpec)
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contain one call to a constructor only, while others (e.g.
Cipher) involve almost ten elements with several layers of
nesting. Fifteen rules come with parameter constraints, eight
of which contain limitations on cryptographic algorithms.
The eight rules without parameter constraints are mostly
related to classes whose purpose is to set up parameters for
specific encryptions (e.g. GCMParameterSpec). All rules
define at least one ENSURES predicate, while only eleven
require predicates from other rules. Across all rules, we
have only declared two methods forbidden. We do not find
this low number surprising as such methods are always
insecure and should not at all be part of a security APL
If at all, two forbidden methods is too high a number. All
rules are available at https://github.com/CROSSINGTUD/
Crypto-API-Rules|

6.1.1 Rule Set for the JCA

Apart from the rules we have discussed for KeyGenerator
and Cipher, the full rule set of COGNICRYPTgssr, €NCOM-
passes a total of 23 CRYSL specifications that specify correct
uses of all JCA classes, which offer various cryptographic
services. In the following, we describe these services with
their respective classes and briefly summarize important
usage constraints. All mentioned classes are defined in the
packages javax.cryptoand java.security of the JCA.

Asymmetric Key Generation: Asymmetric and sym-
metric cryptography requires different key formats. Asym-
metric cryptography uses pairs of public and private keys.
While one of the keys encrypts plaintexts to ciphertexts,
the second key decrypts the ciphertext. The JCA mod-
els a key pair as class KeyPair and are generated by
KeyPairGenerator.

Symmetric Key Generation: Symmetric cryptogra-
phy uses the same key for encryption and decryption. The
JCA models symmetric keys as type SecretKey, gener-
ated by a SecretKeyFactory or KeyGenerator. The
SecretKeyFactory also enables password-based cryptog-
raphy using PBEParameterSpec or PBEKeySpec.

Signing and Verification of Data: The class
Signature of the JCA allows one to digitally sign data
and verify a signature based on a private/public key pair. A
Signature requires the key pair to be correctly generated,
hence the rule for Signature REQUIRES a predicate from
the asymmetric-key generation task.

Generation of Initialization Vectors: Initialization
vectors (IVs) are used to add entropy to ciphertexts of en-
cryptions. An IV must have enough randomness and must
be properly generated. The JCA class IvParameterSpec
wraps a byte array as an IV and it is required for the array
to be randomized by SecureRandom. The CRYSL rule for
IvParameterSpec REQUIRES a predicate randomized.

Encryption and Decryption: The key component of
the JCA is represented by the class Cipher, which imple-
ments functionality to encrypt or decrypt data. Depending
on the used algorithms, modes and paddings must be se-
lected and keys and initialization vectors must be properly
generated. Hence, the complete CRYSL rule for Cipher
requires many other cryptographic services to be executed
securely earlier and list them in its respective REQUIRES
clause.
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Hashing & MACs: There are two forms of crypto-
graphic hash functions. A MAC is an authenticated hash
that requires a symmetric key, but there are also keyless hash
functions such as MD5 or SHA-256. The JCA’s class Mac
implements functionality for mac-ing, while keyless hashes
are computed by MessageDigest.

Persisting Keys: Securely storing key material is an
important cryptographic task for confidentiality and in-
tegrity of the encrypted data. The JCA class KeyStore
supports developers in this task and stores the key material.

Cryptographically Secure Random-Number Genera-
tion: Randomness is vital in all aspects of cryptography.
Java offers cryptographically secure pseudo-random num-
ber generators through SecureRandom. As discussed for
PBEKeySpec, SecureRandom often acts as a helper and
therefore many rules list the randomized predicate in their
own REQUIRES section.

Combination of Diffent Cryptographic Services:
In practice, cryptographic services are often combined to
achieve more security goals than one primitive could offer
on its own. One often-used example is so-called authenticated
encryption that achieves not only confidentiality, but also
authenticity and integrity on the original plaintext. To this
end, MACs and encryption are combined. While there are
multiple ways to combine the two, only first encrypting the
plaintext and then computing the MAC on the ciphertext is
recommended [21]. As such combinations of different cryp-
tographic services are implemented through source code as
well, we have explicitly encoded secure combinations in the
rules of participating classes through predicates.

6.2 COGNICRYPTgast

COGNICRYPTs,sr consists of several extensions to the pro-
gram analysis framework Soot [29] 55]. Soot transforms
a given Java program into an intermediate representation
that facilitates executing intra- and inter-procedural static
analyses. The framework provides standard static analy-
ses such as call-graph construction. Additionally, Soot can
analyze a given Android app intra-procedurally. Further
extensions by FlowDroid [6] enable the construction of
Android-specific call graphs that are necessary to perform
inter-procedural analysis.

Validating the ORDER section in a CRYSL rule requires
solving the typestate check sat$. To this end, we use IDE¥,
a framework for efficient inter-procedural data-flow anal-
ysis [53], to instantiate a typestate analysis. The analysis
defines the finite-state machine A° to check against and
the allocation sites to start the analysis from. From those
allocation sites, IDE% performs a flow-, field-, and context-
sensitive typestate analysis.

The constraints and the predicates require knowledge
about objects and values associated with rule variables
at given execution points in the program. The typestate
analysis in COGNICRYPTs,sr extracts the primitive values
and objects on-the-fly, where the latter are abstracted by
allocation sites. When the typestate analysis encounters a
call site that is referred to in an event definition, and the
respective rule requires the object or value of an argument
to the call, COGNICRYPTs 1 triggers an on-the-fly backward
analysis to extract the objects or values that may partic-

10

ipate in the call. This on-the-fly analysis yields compara-
tively high performance and scalability, because many of
the arguments of interest are values of type String and
Integer. Thus, using an on-demand computation avoids
constant propagation of all strings and integers through the
program. For the on-the-fly backward analysis, we extended
the on-demand pointer analysis Boomerang [51] to prop-
agate both allocation sites and primitive values. Once the
typestate analysis is completed, and all required queries
to Boomerang are computed, COGNICRYPTs,sr solves the
internal constraints and predicates using our own custom-
made solvers.

COGNICRYPTs,sr may be operated as a standalone com-
mand line tool. This way, it takes a program as input
and produces an error report detailing misuses and their
locations. On top of that, we have further integrated
COGNICRYPTgagr into COGNICRYPT [27]. COGNICRYPT is
an Eclipse plugin, which supports developers in using
Crypto APIs by means of scenario-based code generation
as well code analysis for Crypto APIs to find misuses of
them. The code generation provides implementations for
common cryptographic coding tasks (e.g. file encryption,
or establishing secure connections). For misuse detection,
we have replaced COGNICRYPT’s underlying static-analysis
tool TS4] [12] with COGNICRYPTgasr. In this context, COG-
NICRYPT translates misuses found by COGNICRYPTs,sr into
standard Eclipse error markers.

7 CRYPTO-API MISUSE IN ANDROID APPS

We first evaluate COGNICRYPTs,sr by addressing the fol-
lowing research questions:

RQ1: What are the precision and recall of COG-
NICRYPTguqr?

RQ2: What types of misuses does COGNICRYPTs,sr find in
Android apps?

RQ3: How fast does COGNICRYPTgxgr run?
RQ4: How does COGNICRYPTs,sr compare to the state of
the art?

To answer these questions, we applied the generated
static analysis COGNICRYPTsxsr to 10,000 Android apps
from the AndroZoo dataset [4] using our full CRYSL rule
set for the JCA. We ran our experiments on a Debian
virtual machine with sixteen cores and 64 GB RAM. We
chose apps that are available in the official Google Play
Store and received an update in 2017. This restriction
ensures that we report on the most up-to-date usages
of Crypto APIs. We make available all artefacts at this
Github repository: https://github.com/CROSSINGTUD/
paper-crysl-reproduciblity-artefacts|

7.1 Precision and Recall (RQ1)

Setup

To compute precision and recall, the first two authors manu-
ally checked 50 randomly selected apps from our dataset for
typestate errors and violations of internal constraints. To col-
lect this random sample, we implemented a Java program
that generates random numbers using SecureRandom and
retrieved the apps from the corresponding lines in the
spreadsheet containing the results of analysing the 10,000
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TABLE 2
Correctness of COGNICRYPTsast warnings.

Total Warnings  False Positives  False Negatives

Typestate 27 2 4
Constraints 129 19 0
Total 156 21 4

apps. We did not check for unsatisfied predicates or for-
bidden events because these are hard to detect manually—
while it may seem simple to check for calls to forbidden
events, it is non-trivial to determine whether or not such
calls reside in dead code. We compare the results of our
manual analysis to those reported by COGNICRYPTs,sr. The
goal of this evaluation is to compute precision and recall
of the analysis implementation in COGNICRYPTsusr, not
the quality of our CRYSL rules. We discuss the latter in
Section Consequently, we define a false positive to be a
warning that should not be reported according to the spec-
ified rule, irrespective of that rule’s semantic correctness.
Similarly, a false negative would arise if COGNICRYPTsaqr
missed to report a misuse that, according to the CRYSL rule,
does exist in the analyzed program.

Results

In the 50 apps we inspected, COGNICRYPTs,sr detects 228
usages of JCA classes. Table [2] lists the misuses that COG-
NICRYPTs,sr finds (156 misuses in total). In particular, COG-
NICRYPTs,s7 issues 27 typestate-related warnings, with only
2 false positives. Both arise because the analysis is path-
insensitive (Section [5). We further found 4 false negatives
that are caused by initializing a MessageDigest or a MAC
object without completing the operation. COGNICRYPTsasr
fails to find these typestate errors because the supporting
off-the-shelf alias analysis Boomerang times out, causing
COGNICRYPTgasr to abort the typestate analysis without
reporting a warning for the object at hand. A larger timeout
or future improvements to the alias analysis Boomerang
would avoid this problem.

The automated analysis finds 129 constraint violations.
We were able to confirm 110 of them. In the other 19
cases, highly obfuscated code causes the analysis to fail to
extract possible runtime values statically. For such values,
the constraint solver reports the corresponding constraint
as violated. A better handling of such highly obfuscated
code can be enabled by techniques complementary to ours.
For instance, one could augment COGNICRYPTs,sr With the
hybrid static/dynamic analysis Harvester [43]. We have also
checked the apps for missed constraint violations (false
negatives), but were unable to find any.

RQ1: In our manual assessment, the typestate analysis
achieves high precision (92.6%) and recall (86.2%). The
constraint resolution has a precision of 85.3% and a recall
of 100%.
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TABLE 3
Types of API Misuses reported by COGNICRYPTsast for Android apps
that use the JCA.
API Misuse Type # Warnings  # Apps
Incorrect calling sequences 4,708 (23.0%) 2,896
Incorrect parameter values 11,178 (54.7%) 3,955
Calls to forbidden methods 97 ( 0.5%) 62
Insecure compositions 4,443 (21.8%) 1,367
Total 20,426 4,143

7.2 Types of Misuses (RQ2)

Setup

We report findings obtained by analyzing all our 10,000
Android apps from AndroZoo [4]. We then use the results
of our manual analysis (Section[7.1) as a baseline to evaluate
our findings on a large scale.

COGNICRYPTsasr detects the usage of at least one
JCA class in 8,422 apps. Further investigation unveiled
that many of these usages originate from the same com-
mon libraries included in the applications. To avoid
counting the same crypto usages twice, and to pre-
vent over-counting, we exclude usages within pack-
ages com.android, com. facebook.ads, com.google or
com.unity3d from the analysis.

Results

Excluding the findings in common libraries, COG-
NICRYPTsasr detects the usage of at least one JCA class
in 4,349 apps (43% of the analyzed apps). Most of these
apps (95%) contain at least one misuse. We detail COG-
NICRYPTsasr's findings on apps that do contain misuses
in Table Across all apps, COGNICRYPTs,sr started its
analysis for a total of 40,295 allocation sites (i.e., abstract
objects). Of these, a total of 20,426 individual object traces
violate at least one part of the specified rule patterns in
4,143 apps. As an app may contain multiple errors and, by
extension, various types of errors, the total number of apps
that contain misuses is not the sum of apps that contain
certain misuse types.

COGNICRYPTs,s1 reports typestate errors (ORDER section
in the rule) for 4,708 objects, and reports a total of 4,443 ob-
jects to have unsatisfied predicates (i.e., the object expected
a predicate from another object as listed in the REQUIRES
block of a rule). The analysis also discovered 97 reachable
call sites that call forbidden events. The majority of object
traces that violate at least one part of a CRYSL rule (54.7%)
contradict a constraint listed in the CONSTRAINTS section
of a rule.

Approximately 86% of constraint violations are related to
MessageDigest. In our manual analysis (see RQ1), 89 of
the 110 found constraint violations originated from usages
of MD5 and SHA-1. We expect a similar fraction to also
hold for the 11,178 constraint contradictions reported over
all 10,000 apps. Many developers still use MD5 and SHA-1,
although both are no longer recommended by security
experts [21]. COGNICRYPTs,sr identifies 1,228 (10.9%) con-
straint violations related to Cipher usages. In our manual
analysis, all misuses of the Cipher class are due to using the
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insecure algorithm DES or the ECB mode of operation. This
result is in line with the findings of prior studies [16) (18, 49].

More than 75% of the typestate errors that
COGNICRYPTgasr issues are caused by misuses of
MessageDigest. Our manual analysis attributes this
high number to incorrect usages of the method reset (). In
addition to misusing MessageDigest, misuses of Cipher
contribute 766 typestate errors. Finally, COGNICRYPTsusr
detects 157 typestate errors related to PBEKeySpec. The
ORDER section of the CRYSL rule for PBEKeySpec requires
calling clearPassword() at the end of the lifetime of
a PBEKeySpec object. We manually inspected 3 of the
misuses and observed that the call to clearPassword()
is missing in all of them.

Predicates are unsatisfied when COGNICRYPTgagp €X-
pects the interaction of multiple object traces but is not
able to prove their correct interaction. With 4,443 unsatisfied
predicates reported, the number may seem relatively large,
yet one must keep in mind that unsatisfied predicates ac-
cumulate transitively. For example, if COGNICRYPTgxsr can-
not ensure a predicate for a usage of IVParameterSpec,
it will not generate a predicate for the key object that
KeyGenerator generates using the IVParameterSpec
object. Transitively, COGNICRYPTsasr reports an unsatisfied
predicate also for any Cipher object that relies on the
generated key object.

COGNICRYPTssr also found 97 calls to forbidden meth-
ods. Since only two JCA classes require the definition of
forbidden methods in our CRYSL rule set (PBEKeySpec
and Cipher), we do not find this low number surprising. A
manual analysis of a handful of reports suggests that most
of the reported forbidden methods originate from calling
the insecure PBEKeySpec constructors, as we explained in
Section[3

From the 4,349 apps that use at least one JCA Crypto
API, 2,896 apps (66.6%) contain at least one typestate error,
1,367 apps (31.4%) lack required predicates, 62 apps (1.4%)
call at least one forbidden method, and 3,955 apps (90.9%)
violate at least one internal constraint. Ignoring the class
MessageDigest, and hereby excluding MD5 and SHA-1
constraints, 874 apps still violate at least one constraint in
other classes.

RQ2: Approximately 95% of apps misuse at least one Crypto
APL Violating the constraints of MessageDigest is the
most common type of misuse.

7.3 Performance (RQ3)
Setup

During the analysis of our dataset, we measured the ex-
ecution time that COGNICRYPTsssr spent in each of its
four main phases: It constructs (1) a call graph using Flow-
Droid [6] and then runs the actual analysis (Section, which
(2) calls the typestate analysis and (3) constraint analysis as
required, attempting to (4) resolve all declared predicates. We
ran COGNICRYPTs,sr once per application and capped the
time of each run to 30 minutes.

In Section we report that COGNICRYPTsasr found
usages of the JCA in 4,349 of all 10,000 apps in our dataset.
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Fig. 11. Analysis time (in log scale) of the individual phases of COG-
NICRYPTsast When running on the apps that use the JCA.

If we include in the reporting those usages that arise from
misuses within the common libraries previously excluded
(see Section , this number rises to 8,422. We include the
analysis of the libraries in this part of the evaluation because
it helps evaluate the general performance of the analysis in
the worst case when whole applications are analyzed.

Results

Figure 11| summarizes the distribution of analysis times for
the four phases and the total analysis time across these 8,422
apps. For each phase, the box plot highlights the median,
the 25% and 75% quartiles, and the minimal and maximal
values of the distribution.

Across the apps in our dataset, there is a large variation
in the reported execution time (10 seconds to 28.6 minutes).
We attribute this variation to the following reasons. The
analyzed apps have varying sizes—the number of reachable
methods in the call graph varies between 116 and 16,219
(median: 3,125 methods). The majority of the total analysis
time (83%) is spent on call-graph construction. For the
remaining three phases of the analysis, the distribution is
as follows. Across all apps, the resolution of all declared
predicates takes approximately a median of 50 millisec-
onds, and the typestate analysis phase takes a median of
500 milliseconds. The median for the constraint phase is
350 milliseconds. Therefore, the major bottleneck for the
analysis is call-graph construction, a problem orthogonal
to the one we address in this work. Our analysis itself is
efficient and the overall analysis time is clearly dominated
by the runtime of the call-graph construction.

RQ3: On average, COGNICRYPTs,sr analyzes an app in
101 seconds, with call-graph construction taking most of the
time (83%).

7.4 Comparison to Existing Tools (RQ4)
Setup

We compare COGNICRYPTsasr to CRYPTOLINT [18], the
most closely related tool (see also Section [9.3). Unfortu-
nately, despite contacting the authors we were unable to
obtain access to CRYPTOLINT’s implementation. We thus
resorted to reimplementing the original rules that are hard-
coded in CRYPTOLINT as CRYSL rules. All CRYPTOLINT
rules can be modelled in CRYSL. This rule set, however, stil
only covers a fraction of what COGNICRYPTsasr’s default
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CRYSL rule set covers. This fact alone shows CRYSL’s
superior expressiveness.

In this section, RULESETry;; denotes this more compre-
hensive CRYSL rule set of COGNICRYPTsgr that we have
created for all the JCA classes, while RULESET.; denotes
the set of CRYSL rules that we developed to model the
original CRYPTOLINT rules. Additionally, COGNICRYPTsasr
denotes our analysis when it runs using RULESETgy;;, and
COGNICRYPT¢; denotes the analysis when it runs using
RULESET,.

RULESETyy,. consists of 23 rules, one for each class of
the JCA. RULESET¢;, comprises only six individual rules,
and they only use the sections ENSURES, REQUIRES and
CONSTRAINTS. In other words, the original hard-coded
CRYPTOLINT rules do neither comprise typestate proper-
ties nor forbidden methods. For three out of six rules, we
managed to exactly capture the semantics of the hard-coded
CRYPTOLINT rule in a respective CRYSL rule. The remaining
three rules (3, 4, and 6 of the original CRYPTOLINT rules)
cannot be perfectly expressed as a CRYSL rule, and our
CRYSL-based rules over-approximate them instead.

CRYPTOLINT rule 4, for instance, requires salts in
PBEKeySpec to be non-constant. In CRYSL, such a relation-
ship is expressed through predicates. Predicates in CRYSL,
however, follow a white-listing approach and therefore only
model correct behaviour. Therefore, in CRYSL we model
the CRYPTOLINT rule for PBEKeySpec in a stricter manner,
requiring the salt to be not just non-constant but truly ran-
dom, i.e., returned from a proper random generator. We fol-
lowed a similar approach with the other two CRYPTOLINT
rules that we modelled in CRYSL. In result, RULESET, is
stricter than the original implementation of CRYPTOLINT. In
the comparison of COGNICRYPTs,sr and COGNICRYPT; in
terms of their findings, the stricter rules produce more warn-
ings than the original implementation of CRYPTOLINT. In
our comparison against COGNICRYPTs,sr, this setup favours
CRYPTOLINT because we assume that these additional find-
ings to be true positives. Both rule sets are available at
https:/ / github.com/CROSSINGTUD/Crypto- API-Rules|

Results

COGNICRYPT; detects usages of JCA classes in 1,866 An-
droid apps. For these apps, COGNICRYPT, reports 5,507
misuses, only a third of the 20,426 misuses that COG-
NICRYPTsaqr identifies using RULESETgy;;, our more com-
prehensive rule set.

Using COGNICRYPTc,, all reported warnings are related
to 6 classes, compared to 23 classes that are specified in
RULESETgy;.. As we have pointed out, CRYPTOLINT does
not specify any typestate properties or forbidden methods.
Hence, COGNICRYPT; does not find the 4,805 warnings
that COGNICRYPTs,sr identifies in these categories using
RULESETgy... Furthermore, while COGNICRYPTs,gr reports
11,178 constraint violations with the standard rules, COG-
NICRYPT¢, reports only 1,177 constraint violations. Of the
11,178 constraint violations, 9,958 are due to the rule spec-
ification for the class MessageDigest. CRYPTOLINT does
not model this class. If we remove these violations, 1,609
violations are still reported by COGNICRYPTsasr, a total of
432 more than by COGNICRYPT;..
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We compare our findings to the study by Egele et al. [18]
that identifies the use of ECB mode as a common misuse of
cryptography. In that study, 7,656 apps use ECB (65.2% of
apps that use Crypto APIs). In contrast, in our study, COG-
NICRYPT; identified 663 uses of ECB mode in 35.5% of apps
that use Crypto APIs. Although a high number of apps still
exhibit this basic misuse, there is a considerable decrease
(from 65.2% to 35.5%) compared to the previous study by
Egele et al. [18]. We see two possible explanations that may
contribute to the lower number. First, given that all apps in
our study must have received an update in 2017, we believe
that the decrease of misuses reflects taking software security
more seriously in today’s app development. Second, due to
our more extensive rule set, a far greater number of apps
actually counts as using cryptography, even those that do
not even use Cipher. Hence, the ratio of crypto apps in our
findings that even use Cipher is necessarily much smaller
than for CRYPTOLINT’s original evaluation, pushing down
the ratio of apps possibly containing this particular misuse.

Based on the high precision (92.6%) and recall (96.2%)
values discussed in RQ1, we argue that COGNICRYPTsaqr
provides an analysis with a much higher recall than CRYP-
TOLINT. Although the larger and more comprehensive rule
set, RULESETgy1, detects more complex misuses, the precise
analysis keeps the false-positive rate at a low percentage.

RQ4: The more comprehensive RULESETry;; detects 3x as
many misuses as CRYPTOLINT in almost 4x more JCA
classes.

7.5 Threats to Validity

Our ruleset RULESETgyy; is mainly based on the documen-
tation of the JCA [25]. Although we have significant domain
expertise, our CRYSL-rule specifications for the JCA are only
as correct as the JCA documentation. Our static-analysis
toolchain depends on multiple external components and
despite an extensive set of test cases, of course, we cannot
fully rule out bugs in the implementation.

Java allows a developer to programmatically se-
lect a non-default cryptographic service provider. COG-
NICRYPTsas7 currently does not detect such customizations
but instead assumes that the default provider is used. This
behaviour may lead to imprecise results because our rules
forbid certain default values that are insecure for the default
provider, but may be secure if a different one is chosen.

8 CRYPTO-API MISUSE IN JAVA SOFTWARE

In this section, we present a large-scale study of misuses of
Crypto APIs in Java applications. With the study, we wish
to answer the following research questions:

RQ5: How prevalent are misuses of Crypto APIs in Java
software?

RQ6: What types of misuses are present in Java software?
RQ7: How do Java and Android software compare in

terms of Crypto APIs misuses?
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TABLE 4
Types of APl Misuses reported by COGNICRYPTsast for Maven Central
artefacts that use the JCA.

API Misuse Type # Warnings  # Apps

Incorrect calling sequences 8,860 (39.1%) 2,408

Incorrect parameter values 6,827 (30.1%) 3,656

Calls to forbidden methods 203 ( 0.9%) 130

Insecure compositions 6,774 (29.8%) 1,737

Total 22,664 7,287
8.1 Setup

To have a representative sample set of Java applications,
we collected the latest versions of all artefacts on Maven
Central, the world’s largest code repository for Java appli-
cations. In May 2018, the index of Maven Central lists a total
of 2,768,263 JAR files. We restricted our analysis to the latest
version of each individual software artefact, resulting in a
dataset of 204,788 JAR files that we ran COGNICRYPTgasr ON
with RULESETyy;.

We ran the study on a 32-core machine with 128 GB
RAM and 2 TB of disk space. We analyzed 10 artefacts at
a time in parallel, and granted each analysis a maximum of
10 GB of heap space. Most of the artefacts on Maven Central
are libraries, which makes it difficult to pre-compute a call
graph [44] for an artefact. We rely on the call graph algo-
rithm Class Hierarchy Analysis (CHA) [17] that constructs
an imprecise but efficient call graph that is well suited for
libraries. For the artefacts that contain uses of the JCA, it
took an arithmetic mean of 38 seconds to construct the
call graph and 120 seconds to run COGNICRYPTsasr per
application. In total, the analysis took 6 days to complete
for the whole dataset. To answer RQ6, we compare the
results from our study on Maven Central to the study in
the previous section.

8.2 Results

Table [ summarizes the results of the study. COG-
NICRYPTgagr finds 7,288 Java artefacts that use the JCA. Of
those, 4,929 artefacts (63.0%) produce at least one warning.
In total, these artefacts contain 22,664 misuses, an average
of 3.1 misuses per artefact.

RQ5: COGNICRYPTs,sr finds an average of 3.1 misuses per
artefact, with at least one misuse in 63% of all artefacts,
resulting in an overall lower average than in our Android
study.

A more detailed analysis of the results reveals
that roughly 39.1% of the misuses are parameter-
constraint violations. Similar to our Android study, class
MessageDigest is the biggest source of constraint viola-
tions (4,462 misuses). The only other class that sticks out
is again Cipher with 1,262 misuses. Although we have not
manually analyzed a representative number of vulnerability
reports from COGNICRYPTsasr for this dataset, given the
results from our manual analysis in Section [/, we assume
most of the misuses related to these two classes come from
uses of MD5, SHA-1, DES, and ECB.
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COGNICRYPTssr further observes 8,860 incorrect call-
ing sequences, one third stemming from incorrect calls
(3,085) and two thirds from incomplete uses (5,775). Again,
MessageDigest and Cipher produce most of these
misuses, with 4,491 and 2,193, respectively. In all 7,287
Maven artefacts that use the JCA, COGNICRYPTg,gr has
encountered 203 calls to forbidden methods. Lastly, COG-
NICRYPTsasr detects 6,774 insecure compositions.

RQ6: In contrast to our evaluation of Android apps, across
all studied Java artefacts on Maven Central, insecure call-
ing sequences (39.1%) contribute the most to the detected
misuses, followed by insecure parameters (30.1%)).

In Section we concluded that out of the 4,071 apps that
contain uses of the JCA, 95% misuse it at least once. Our
results indicate that the rate of insecure Java applications
is 63% (i.e., 32 percentage points lower). COGNICRYPTsasr
has also found a lower average of misuses per application
for our sample set. For Android, COGNICRYPTs.sr found
4.8 misuses per app, while here we saw an average of 3.1
misuses per app. Therefore, in terms of overall misuse, Java
applications appear to contain fewer misuses, but are still
insecure overall. The distribution of misuse types exhibits
two remarkable differences. That is, COGNICRYPTg,qr finds
many more applications with incorrect parameters (95.5%
vs. 50.1%) and incorrect calling sequences (69.9% vs. 33.0%).
For the rest, the numbers are closer to each other. There
are more with insecure compositions (33.0% vs. 23.8%) and
slightly fewer calls to forbidden methods (1.4% vs. 1.7%).

RQ7: Comparing our answers to RQ5 and RQ6 with those
to RQ2, we first observe a 34% lower rate of crypto-misusing
artefacts in Maven Central than crypto-misusing Android
apps in the Google Play Store. The distribution is generally
rather similar, only the much lower number of apps with
constraint errors is notable.

8.3 Case Studies

We want to take a close look at three vulnerabilities that
COGNICRYPTg,sr detected thanks to its white-list approach
and its precise analysis. We encountered these examples
when cross-checking some of the findings.

8.3.1 Kerberos Application

We first discuss an example from an artefact implement-
ing the kerberos protocol developed by a widely known
vendor. The code snippet in Figure [12| contains two mis-
uses. First, a Cipher object is instantiated for an en-
cryption with the broken algorithm RC4 (Line [127). Sec-
ond, Line [140] in the method calculatelIntegrity ()
defines a MAC object. This statement is followed by a
call to Mac.doFinal (). When executed, this method will
throw an I1legalStateException because any MAC ob-
ject must be initialized by a call to init () before calling
doFinal () onit. This misuse not only makes the code non-
functional, but also insecure as a security-critical operation,
namely mac-ing of data, can never be performed.
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126 public byte[] processCipher (boolean isEncrypt,
byte[] data, byte[] keyBytes) {
127 Cipher cipher =
Cipher.getInstance ("ARCFOUR") ;
128 SecretKey key = new SecretKeySpec (keyBytes,
"ARCFOUR") ;
129
130 if (isEncrypt) {
131 cipher.init (Cipher.ENCRYPT_MODE, key);
132 } else {
133 cipher.init (Cipher.DECRYPT_MODE, key);
134 }
135 return cipher.doFinal (data);
136 }
137
138 public byte[] calculateIntegrity (byte[] data,
byte[] key, KeyUsage usage) {
139 try {

140 Mac digester =
Mac.getInstance ("HmacMD5") ;

141 return digester.doFinal (data);

142 } catch (NoSuchAlgorithmException nsae) {
143 return null;

144 }

145 }

Fig. 12. An example illustrating the use of the insecure RC4 and missing
the initialization of a MAC object.

8.3.2 Application Server

Figure (13| depicts another interesting example from a pop-
ular application-server artefact. The method getStore ()
defines a KeyStore object and subsequently calls 1oad ()
on it. The method KeyStore.load() receives a pass-
word as char[]. This password should not be of type
String, but in the code snippet it is. However, what is
interesting about this example is what COGNICRYPTsasr
finds in addition to the wrong type for the pass-
word. The method getStore () is called by the method
getTrustStore () (Line [156), which in turn retrieves
the password by calling getTrustStorePassword()
(Line [T54). This method attempts to read the password
from a configuration file and, if that fails, from a system
property. If both attempts fail, the method calls yet another
method: getKeyStorePassword () (Line[178). Within this
method, the same config file is read twice in an attempt
to retrieve the password. If both also fail, the hard-coded
string "changeit™ is returned as the password. Putting all
of this together, under certain circumstances, the password
used to load the keystore may not only be of type String,
while it should not, but it may be a hard-coded string. COG-
NICRYPTs,sr finds this misuse, primarily because of its com-
prehensive CRYSL rule set. On top of that, COGNICRYPTsaqr
displays the password in the respective vulnerability report.
This behaviour is mostly due to Boomerang [52] that enables
COGNICRYPTsasr to retrieve the original allocation site of
the password even across several methods.

8.3.3 Data-Visualization Application

Lastly, we discuss a misuse in the code snippet in Figure
As mentioned before, CRYSL mostly follows a white-listing
approach, except that it also allows for the declaration
of forbidden methods. Certain init () methods of class
Cipher are examples of those forbidden methods. These
init () methods do not allow one to pass IVs or similar

15
146 private KeyStore getStore(String type, String
path, String pass) {

147 KeyStore ks = KeyStore.getInstance (type);

148 ks.load(istream, pass.toCharArray());

149 return ks;

150 }

151

152 protected KeyStore getTrustStore() {

153 [...]

154 String truststorePassword =
getTruststorePassword() ;

155 if ((truststore != null) &&
(truststorePassword != null)) {

156 ts = getStore(truststoreType, truststore,

truststorePassword) ;

157 }

158 return ts;

159 }

160

161 protected String getKeystorePassword() {

162 String keyPass =
(String)attributes.get ("keypass");

163 if (keyPass == null) ({

164 keyPass = "changeit";

165 }

166 String keystorePass =
(String)attributes.get ("keystorePass") ;

167 if (keystorePass == null) ({

168 keystorePass = keyPass;

169 }

170 return keystorePass;

171 }

172

173 protected String getTruststorePassword() {

174 String truststorePassword =
(String)attributes.get ("truststorePass");

175 if (truststorePassword == null) {

176 truststorePassword = System.getProperty (

"javax.net.ssl.trustStorePassword");
177 if (truststorePassword == null) ({
178 truststorePassword =
getKeystorePassword() ;

179 }

180 }

181 return truststorePassword;

182 1}

Fig. 13. A hard-coded password ("changeit", Line [64) flows to the
call to KeyStore.load () in Line

extra parameters, which are, however, necessary if one
wishes to use a mode of operation other than ECB. Since
the proper generation of an IV can be tricky, the standard
provider SunJCE can automatically prepare an IV for the
developer in case of an encryption. In turn, the developer
has to retrieve the IV after the encryption and supply it to
the Cipher object responsible for the decryption by calling
an appropriate init method. If no IV is provided, the
statement throws an TnvalidKeyException and is, there-
fore, not even executed successfully. In summary, should
another mode than ECB be used for a decryption with a
symmetric block cipher, one must not call Cipher.init ()
methods that do not take an IV. However, the code snippet
in Figure[T4] does exactly that.

Lines retrieve a secret key, an algorithm, a
mode of operation, padding scheme, and an IV from an
external context. COGNICRYPTg gy fails to determine the
values precisely, so it considers all possibilities. Line
creates a Cipher object configured with the algorithm and
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183 public Cipher decrypt (byte[] secure,
ExternalContext ctx) {

184 SecretKey secretKey = (SecretKey)
getSecret (ctx);
185 String algorithm = findAlgorithm (ctx);

186 String algorithmParams =
findAlgorithmParams (ctx);

187 byte[] iv = findInitializationVector (ctx);
188
189 Cipher cipher =
Cipher.getInstance (algorithm + "/" +
algorithmParams) ;
190 if (iv != null) {
191 IvParameterSpec ivSpec = new
IvParameterSpec (iv) ;
192 cipher.init (Cipher.DECRYPT_MODE,
secretKey, ivSpec);
193 } else {
194 cipher.init (Cipher.DECRYPT_MODE,
secretKey) ;
195 }
196
197 [...]
198 return cipher.doFinal (secure, ...);

199 1}

Fig. 14. An example illustrating an incorrect call to Cipher.init ().

other transformation parameters. In the subsequent lines,
the method checks whether the IV is null. If not, the
correct init () method is called to initialize the Cipher
object into decryption mode using the IV. However, if it
is null, the method calls an init method that does not
require an IV to be passed. The way this code is set up
leaves room for two insecure situations only. First, in some
cases, the transformation parameters specify ECB as mode
of operation, which is insecure. Second, ECB and the else
branch may rather be thought of as a What if fall-back
solution. Then, this call may occur for modes that do require
an IV, which may lead to the statement throwing a runtime
exception. In both cases, the decrypt () method contains
insecure or non-functional code.

Responsible Disclosure: For the vulnerabilities iden-
tified within the Java artefacts in Maven Central, we plan
to contact the artefacts” vendors in a responsible-disclosure
process. Unfortunately, Maven repositories do not comprise
a simple way to contact artefact authors directly. We are
currently in discussion with our national CERT to determine
the most sensible course of action.

9 RELATED WORK

We now contrast CRYSL and COGNICRYPTgxgr With the
following related lines of work: approaches for specifying
API (mis)uses, approaches for inferring API specifications,
and previous approaches for detecting misuses of security
APIs. Our review of these approaches shows that existing
specification languages are not optimally suited for defining
misuses of Crypto APIs. Additionally, automated inference
of correct uses of Crypto APIs is hard to achieve, and
existing tools for detecting misuses of Crypto APIs are
limited mainly because they have hard-coded rule sets, and
support for the most part lightweight syntactic analyses.
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9.1 Languages for Specifying and Checking API Prop-
erties

There is a significant body of research on textual specifica-
tion languages that ensure API properties by means of static
data-flow analysis. Tracematches [3] were designed to check
typestate properties defined by regular expressions over
runtime objects. Bodden et al. [11, [13] as well as Naeem and
Lhoték [36] present algorithms to (partially) evaluate state
matches prior to program execution, using static analysis.

Martin et al. [32] present Program Query Language
(PQL) that enables a developer to specify patterns of event
sequences that constitute potentially defective behaviour. A
dynamic analysis (i.e., tracematches optimized by a static
pre-analysis) matches the patterns against a given program
run. A pattern may include a fix that is applied to each
match by dynamic instrumentation. PQL has been applied
to detecting security-related vulnerabilities such as mem-
ory leaks [32], SQL injection, and cross-site scripting [31]].
Compared to tracematches, PQL captures a greater variety
of pattern specifications, at the disadvantage of only flow-
insensitive static optimizations. PQL serves as the main
inspiration for CRYSL's syntax. Other languages that pursue
similar goals include PTQL [23], PDL [34], SLIC [8, 9] and
TS4] [12].

We investigated tracematches and PQL in detail, yet
found them insufficiently equipped for the task at hand.
First, both systems follow a black-list approach by defining
and finding incorrect program behaviour. We initially fol-
lowed this approach for crypto-usage mistakes, but quickly
discovered that it would lead to long, repetitive, and con-
voluted misuse-definitions. Consequently, CRYSL defines
desired behaviour, which, in the case of Crypto APIs,
leads to more compact specifications. Second, the above
languages are general-purpose languages for bug finding,
which causes them to miss features essential to define secure
usages of Crypto APIs in particular. The strong focus of
CRYSL on cryptography allows us to cover a greater portion
of cryptography-related problems in CRYSL compared to
other languages, while at the same time keeping CRYSL rel-
atively simple. Third, the CRYSL compiler generates state-
of-the-art static analyses that were shown to have better
performance and precision than other approaches [53], low-
ering the threat of false warnings.

9.2

As an alternative to specifying API-usage properties man-
ually, one can attempt to infer them from existing program
code. Robillard et al. [46] surveyed over 60 approaches to
API property inference. As this survey shows, all but two
of the surveyed approaches infer patterns from client code
(i.e., from applications that use the API in question). When
it comes to Crypto APIs, however, past studies have shown
that the majority of existing usages of those APIs is, in fact,
insecure [16, [18] [49].

To infer Crypto-API rules, Paletov et al. [41] thus fol-
low a different approach: instead mining of the client
code directly, they instead mine code changes related
to Crypto APIs. Subsequently, the authors cluster these
changes and derive a usage rule from each cluster. While
the work is a first step towards inferring Crypto-API rules,

Inference/Mining of APl-usage specifications
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it also shows the challenges involved. For instance, a closer
observation of the inferred rules shows that many of them
are overly simplistic and lack context. For instance their rule
R4 states “SecureRandom with getInstanceStrong should
be avoided” although this is only true “on server-side
code running on Solaris/Linux/MacOS”—in most other
cases, calling getInstanceStrong is actually recommended
and avoids security pitfalls. The approach also lacks recall:
the paper states 13 rules only, while our rule set for the
JCA alone compactly encodes hundreds of individual rules.
Nonetheless, it would be interesting to see if the authors’
approach can be used to infer at least partial CRYSL rules.
For their experiments, Paletov et al. did not automate the
actual generation of machine-checkable rules but instead
derived appropriate static checks by hand.

Another idea that appears sensible at first sight is to
infer correct usage of Crypto APIs from posts on developer
portals like StackOverflow. However, recent studies show
the “solutions” posted there often include insecure code [1].

In result, one can only conclude that automated min-
ing of API-usage specifications is very challenging for
Crypto APIs, if it is possible at all. In the future, we plan
to investigate a semi-automated approach in which we use
automated inference to infer at least partial specifications,
but directly in CRYSL, that security experts can then further
correct and complete by hand.

9.3 Detecting Misuses of Security APls

Only few previous approaches specifically address the de-
tection of misuses of security APIs. CRYPTOLINT [18] per-
forms a lightweight syntactic analysis to detect violations of
exactly six hard-coded usage rules for the JCA in Android
apps. Those six rules, while important to obey for security,
resemble only a tiny fraction of the rule set we provide in
this work. It is also hard to specify and validate new rules
using CRYPTOLINT, because they would have to be hard-
coded. Unlike CRYPTOLINT, CRYSL is designed to allow
crypto experts to also express comprehensive and complex
rules with ease. In Section [/} we have extensively compared
our tool COGNICRYPTgagr to CRYPTOLINT.

Another tool that finds misuses of Crypto APIs is
Crypto Misuse Analyzer (CMA) [49]. Similar to CRYP-
TOLINT, CMA’s rules are hard-coded, and its static analysis
is rather basic. Many of CMA’s hard-coded rules are also
contained in the CRYSL rule set that we provide. Unlike
COGNICRYPTspsr, CMA has been evaluated on a small
dataset of only 45 apps.

Chatzikonstantinou et al. [16] manually identified mis-
uses of Crypto APIs in 49 apps and then verified their find-
ings using a dynamic checker. All three studies concluded
that at least 88% of the studied apps misuse at least one
Crypto APL

Nguyen et al. [38] present Fixdroid. The static-analysis
plugin for Android Studio comes equipped with 13 rules
related to security APIs. In terms of Crypto APIs, it also
covers about the same rules as CRYPTOLINT.

Wang et al. [56] present NativeSpeaker, a tool that checks
for crypto misuses in native code. The tool can detect two
kinds of crypto uses. First, it detects when native code
calls the JCA (whose interfaces are implemented in plain
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Java). Second, it applies heuristics comprising filters on an
operation’s type and name to find cryptography within the
native code itself. For each use found, it checks for a number
of misuse types related to symmetric encryption only. In
this context, NativeSpeaker finds uses of outdated crypto
algorithms, uses of ECB mode, and improper key material.

Braga et al. [14] present a comparative survey of free
static analyzers that check for misuses of crypto APIs. The
studied tools include FindSecBugs [5], VisualCodeGrep-
per [37], Xanitizer [45], sonar-scanner [50], and Yasca [48].
To evaluate these tools, the authors compile a benchmark of
384 test cases, 202 of which contain crypto misuses. When
applying each tool to their benchmark, they find the general
coverage of crypto misuses to be rather low. Xanitizer —
the best among the selected — only finds 68 misuses while
producing 40 false positives. The tools mostly cover simple
misuses such as outdated algorithms or ECB mode, but fail
on more complex cases like detecting improper IVs.

Other work has investigated other kinds of security
APIs. Fahl et al. [19] analyzed 13,500 Android apps with
their static checker Mallodroid. Mallodroid evaluates apps
in terms of insufficient validation of TLS certificates. From
their sample set, 1,074 apps do prove to fall short in that
regard, leaving them vulnerable to person-in-the-middle
attacks. Similarly, Georgiev et al. [22] achieve similar results
in an in-depth analysis of how a number of high-profile apps
handle TLS-certificate validation.

None of the previous approaches facilitates rule creation
by means of a higher-level specification language. Instead,
the rules are hard-coded into each tool’s code, making it
hard for non-experts in static analysis to extend or alter the
rule set. Consequently, the tools are not completely inca-
pable of supporting COGNICRYPTsasr’s broad range of mis-
uses, but extending one to do so requires intricate knowl-
edge of the respective tool and its code. This limitation also
makes it impossible to share rules among tools. Moreover,
such hard-coded rules are quite restricted, causing the tools
to have a very low recall (i.e., missing many actual API
misuses). CRYSL, on the other hand, due to its Java-like
syntax, enables cryptography experts without expertise in
static analysis to define new rules. The CRYSL compiler
then automatically transforms those rules into appropriate,
highly-precise static-analysis checks. By defining crypto-
usage rules in CRYSL instead of hard-coding them, one also
makes those rules reusable in different contexts.

10 CONCLUSION

In this paper, we present CRYSL, a specification language
for correct usages of cryptographic APIs. Each CRYSL rule
is specific to one class, and it may include usage pattern
definitions and constraints on parameters. Predicates model
the interactions between classes. For example, a rule may
generate a predicate on an object if it is used successfully,
and another rule may require that predicate from an object it
uses. We also present a compiler for CRYSL that transforms
a provided ruleset into an efficient and precise data-flow
analysis COGNICRYPTsasr checking for compliance accord-
ing to the rules. Applying COGNICRYPTs,sr, the analysis
for our extensive ruleset RULESETgy. ., to 10,000 Android
apps, we found 20,426 misuses spread over 95% of the 4,349
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apps using the JCA. Similarly, we applied COGNICRYPTgusr
to 2,700,000 artefacts on Maven and it detected misuses in
63% of the artefacts that use cryptography. COGNICRYPTsusr
is also highly efficient: it analyzed all of Maven Central in
under a week and for more than 75% of the apps the analysis
finishes in under 3 minutes, where most of the time is spent
call graph construction.

11 FUTURE WORK

In future work, we plan to address the following challenges.
CRYSL currently only supports a binary understanding
of security — a usage is either secure or not. We would
like to enhance CRYSL to have a more fine-grained no-
tion of security to allow for more nuanced warnings in
COGNICRYPTsaqr. This is challenging because the CRYSL
language still ought to be concise. Additionally, CRYSL cur-
rently requires one rule per class per JCA provider, because
there is no way to express the commonality and variability
between different providers implementing the same algo-
rithms, leading to specification overhead. To address this
issue, we plan to modularize the language using import and
override mechanisms. Moreover, we plan to extend CRYSL
to support more complex properties such as using the same
cryptographic key for multiple purposes.

We also intend on applying CRYSL in other contexts.
One of the authors of this paper has some students imple-
ment a dynamic checker to identify and mitigate violations
at runtime. While the JCA is indeed the most commonly
used Crypto library, other Crypto libraries such as Bouncy-
Castle [39] are being used as well and we will extend COG-
NICRYPTs,sr to support them. Additionally, we will investi-
gate to which extent CRYSL is applicable to Crypto APIs in
other programming languages. At the time of writing, we
are exploring CRYSL’s compatibility with OpenSSL [40]. We
finally aim to examine whether CRYSL is expressive enough
to meaningfully specify usage constraints for non-crypto
APIs.

Lastly, we hope that in the future, domain experts model
their own cryptographic libraries in CRYSL, such that de-
velopers using the libraries benefit from the static analysis
support offered by COGNICRYPT.
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