
Application-only Call Graph Construction

Karim Ali and Ondřej Lhoták

David R. Cheriton School of Computer Science, University of Waterloo

Abstract. Since call graphs are an essential starting point for all inter-
procedural analyses, many tools and frameworks have been developed to
generate the call graph of a given program. The majority of these tools
focus on generating the call graph of the whole program (i.e., both the
application and the libraries that the application depends on). A popular
compromise to the excessive cost of building a call graph for the whole
program is to ignore all the effects of the library code and any calls the
library makes back into the application. This results in potential un-
soundness in the generated call graph and therefore in any analysis that
uses it. In this paper, we present Cgc, a tool that generates a sound call
graph for the application part of a program without analyzing the code
of the library.

1 Introduction

A call graph is a necessary prerequisite for most interprocedural analyses used
in compilers, verification tools, and program understanding tools [19]. However,
constructing a sound, precise call graph for even a small object-oriented pro-
gram is difficult and expensive. For example, constructing the call graph of a
Java “Hello, World!” program using Spark [20] can take up to 30 seconds, and
produces a call graph with 5,313 reachable methods and more than 23,000 edges.
The key reason is dynamic dispatch: the target of a call depends on the run-
time type of the receiver of the call. Because the receiver could have been created
anywhere in the program, a sound algorithm must either analyze the whole pro-
gram [1, 6, 17, 21, 34], or make very conservative assumptions about the receiver
type (e.g., Class Hierarchy Analysis [9]). Additionally, due to the large sizes of
common libraries, whole-program analysis of even trivial programs is expensive
[7, 27, 28]. Practical programs generally have many library dependencies, and in
many cases, the whole program may not even be available for static analysis.
Our aim is to construct sound and precise call graphs for the application part of
a program without analyzing the libraries that it depends on.1

Construction of partial call graphs is an often-requested feature in static
analysis frameworks for Java. On the mailing list of the Soot framework [34],
which analyzes the whole program to construct a call graph, dozens of users
have requested partial call graph construction [4]. One popular approach for

1 In the rest of this paper, we will use the singular “library” to mean all of the libraries
that a program depends on.



generating partial call graphs, used for example in the Wala framework [17], is
to define an analysis scope of the classes to be analyzed. The analysis scope then
represents the application part of the program. The effects of code outside this
scope (i.e., the library) are ignored. As a consequence, the generated call graph
lacks edges representing call-backs from the library to the application. Methods
that should be reachable due to those call-back edges are ignored as well. Since
this approach ignores the effects of the library code, any store or load operation in
the library that involves an application object is ignored. Therefore, the points-
to sets of the application objects will be incomplete, potentially causing even
more call graph edges to be missing.

In contrast, we aim to produce a partial call graph that soundly overapprox-
imates the set of targets of every call site in the analysis scope, and the set of
reachable methods in the analysis scope. Our call graph uses a single summary
node to represent all methods in the library. However, the analysis should be ac-
curate for the application code. The goal of our work is to make less conservative
assumptions about the library code, which is not analyzed, while still generating
a precise and sound call graph for the application.

The essential observation behind our approach is that the division between an
application and its library is not arbitrary. If the analysis scope could be any set
of classes, then the call graph would necessarily be very imprecise. In particular,
a sound analysis would have to assume that the unanalyzed code could call any
non-private method and modify any non-private field in the analysis scope.2

A realistic yet very useful assumption is that the code of the library has
been compiled without access to the code of the application. We refer to this
as the separate compilation assumption. From this, we can deduce more specific
restrictions on how the library can interact with the application, which we will
explain in detail in Section 3. In particular, the library cannot call a method,
access a field, or instantiate a class of the application if the library author does
not know the name of the method, field, or class. It is theoretically possible to
discover this information using reflection, and some special-purpose “libraries”
such as JUnit [18] actually do so. We assume that such reflective poking into the
internals of an application is rare in most general libraries.

In this paper, we evaluate the hypothesis that this assumption of separate
compilation is sufficient to construct precise call graphs. We provide a prototype
implementation for call graph construction, Cgc, that uses a pointer analysis
based on the separate compilation assumption. We evaluate soundness by com-
paring against the dynamic call graphs observed at run time by *J [11]. Since
a dynamic call graph does not represent all possible paths of a program, it
does not make sense to use it to evaluate the precision of a static call graph.
Therefore, we evaluate precision by comparing against call graphs constructed
by whole-program analysis (using both the Spark [20] and Doop [6] call graph
construction systems). We also compare the performance of our prototype par-

2 Some field modifications could theoretically be ruled out if an escape analysis de-
termined that some objects are not reachable through the heap from any objects
available to the unanalyzed code.



tial call graph construction system with whole-program call graph construc-
tion. However, our prototype implementation is optimized for adaptability and
for producing call graphs comparable to those of other frameworks in terms of
soundness and precision and not specifically for performance. Given the positive
research results from our prototype, an obvious next implementation step would
be to optimize and embed the analysis within popular analysis frameworks such
as Spark, Doop, and Wala.

In summary, this paper makes the following contributions:

– It identifies the separate compilation assumption as key to partial call graph
construction, and specifies the assumptions about the effects of library code
that can be derived from it.

– It presents our prototype implementation of a partial call graph construction
system, Cgc.

– It empirically shows that the separate compilation assumption is sufficient
for constructing precise and sound application-only call graphs.

2 Background

2.1 Call Graph Construction

The targets of method calls in object-oriented languages are determined through
dynamic dispatch. Therefore, a precise call graph construction technique requires
a combination of two inter-related analyses: it must determine the targets of
calls, and also determine the run-time types of referenced objects (i.e., points-to
analysis). In Figure 1, both analyses are divided further and their dependencies
are made more explicit. Determining the targets of calls is divided into two
relations: reachable methods and call edges. On the other hand, the points-to
analysis is defined by two other relations: points-to sets and points-to constraints.

The main goal of a call graph construction algorithm is to derive the call
edges relation. A call edge connects a call site, which is an instruction in some

Fig. 1. Inter-dependent relations that make up a call graph construction algorithm.



method, to a method that may be invoked from that call site. Figure 1 shows
that the call edge relation depends on two relations: reachable methods and
points-to sets. First, we are only interested in call sites that may actually be
executed and are not dead code. A precise call graph construction algorithm
therefore keeps track of the set of methods that are transitively reachable from
the entry points of the program, e.g., its main() method. Second, the target of a
given call depends on the run-time type of the receiver of the call. A precise call
graph construction algorithm therefore computes the points-to sets abstracting
the objects that each variable could point to. There are two common methods of
abstraction to represent objects: either by their allocation site (from which their
run-time type can be deduced) or by their run-time type. Thus, the points-to
set of a variable at a call site indicates the run-time types of the receiver of that
call.

Points-to sets are computed by finding the least fixed-point solution of a
system of subset constraints that model all possible assignments between vari-
ables in the program. Thus, an abstract object “flows” from its allocation site
into the points-to sets of all variables to which it could be assigned. Eventu-
ally, the abstract object reaches all of the call sites at which its methods could
be called. The dependency of the points-to set relation on the call edges rela-
tion is illustrated in Figure 1. The calculation of the points-to sets is subject to
the points-to constraints. The points-to constraints model intra-procedural as-
signments between variables due to explicit instructions within methods. They
also model inter-procedural assignments due to parameter passing and returns
from methods. Since only intra-procedural assignments in reachable methods
are considered, the set of points-to constraints depends on the set of reachable
methods. The set of call edges is another dependency because it determines the
inter-procedural assignments.

Finally, the set of reachable methods depends, of course, on the set of call
edges. A method is reachable if any call edge leads to it. A precise call graph con-
struction algorithm computes these four inter-dependent relations concurrently
until it reaches a mutual least fixed point. This is often called on-the-fly call
graph construction.

2.2 Partial Call Graph Construction

If a sound call graph is to be constructed without analyzing the whole program,
conservative assumptions must be made for all four of the inter-dependent rela-
tions in Figure 1. A sound analysis must assume that any unanalyzed methods
could do “anything”: they could arbitrarily call other methods and assign ar-
bitrary values to fields. Due to the dependencies between the four relations,
imprecision in any one relation can quickly pollute the others.

Our call graph construction algorithm computes precise information for the
application part of the call graph, but uses summary nodes for information
about the library. It assumes that all library methods are reachable, and uses a
single summary “method” to represent them. Calls from application methods to
library methods and vice versa are represented as call edges to or from the library



public class Main {

public static void main(String[] args) {

MyHashMap<String,String> myHashMap = new MyHashMap<String,String>();

System.out.println(myHashMap);

}

}

public class MyHashMap<K,V> extends HashMap<K,V> {

public void clear() { }

public int size() { return 0; }

public String toString() { return "MyHashMap"; }

}

Fig. 2. A sample Java program that will be used for demonstration.

(a) (b)

Fig. 3. Two branches from the call graph for the sample program in Figure 2 as gen-
erated by (a) Spark and (b) Cgc. The dashed line represents a call from a library
method to an application method (i.e., a library call-back).

summary node. A call edge is created for each possible call between application
methods, but no edges are created to represent calls within the library. It is
implicitly assumed that any library method could call any other library method.
Similarly, a single summary points-to set is used to represent the points-to sets of
all variables within the library. Intra-library pointer flow, however, is not tracked
precisely.

Figure 2 shows a sample Java program that we will use to demonstrate our
analysis. Figure 3 compares two branches from the call graphs generated for this
sample program by (a) Spark and (b) Cgc. We computed both branches by
following the paths from the entry point method of the call graph, Main.main(),
using the CallGraphView tool that comes with Probe [19]. In Figure 3(a), we
can see that the first branch shows all of the call edges from the method My-

HashMap.<init>() all the way up to java.lang.Object.<init>(). Moreover,



the second branch in the call graph shows the call edges between library methods,
e.g., the call edge from the method java.io.PrintStream.println(Object) to
the method java.lang.String.valueOf(Object). The target of that edge calls
back to the application method MyHashMap.toString().

On the other hand, Figure 3(b) shows how Cgc represents the same branches.
All of the edges beyond the predefined point of interest of the user (i.e., the
application classes MyHashMap and Main) are considered as part of the library
and are not explicitly represented in the graph. Therefore, all library methods
are reduced to one library node that can have edges to and from application
methods. The figure also shows that even for such a small sample program, the
graph generated by Cgc is easier to visualize and inspect. This will give the
users a more focused view of the classes they are interested in, similar to what
they would do during manual code inspection [15]. Having a more focused and
precise view of the call graph should not ignore any of the potential call edges.
Ignoring the library call-back edge in Figure 3(a), for example, will render the
generated call graph unsound. Thus, it is crucial to precisely define, based on
the separate compilation assumption, how the library summary node interacts
with the application methods in the call graph.

3 The Separate Compilation Assumption

The input to our call graph construction algorithm is a set of Java classes desig-
nated as the application classes. The application classes may have dependencies
on classes outside this set. We designate any class outside the set as a library
class. We use the terms application method and library method to refer to the
methods of application and library classes, respectively. The call graph construc-
tion algorithm analyzes the bytecode instructions of only the application classes.
It does not analyze the instructions of any library class. However, the algorithm
uses structural information (i.e., method signatures and field names) of each li-
brary class that is referenced in an application class, as well as its superclasses
and superinterfaces. This is only a small subset of the full set of library classes.
These referenced library classes are necessary to compile the application classes,
and are readily available to the developer of the application.

The soundness of our approach depends on the Separate Compilation
Assumption: all of the library classes are developed separately from the ap-
plication classes. In particular, all of the library classes can be compiled in the
absence of the application classes.

If a call graph construction algorithm does not analyze the whole program,
it must make very conservative assumptions about the effects of the unanalyzed
code. The separate compilation assumption makes these assumptions signifi-
cantly less conservative. Without the separate compilation assumption, a sound
algorithm would have to assume the following.

1. An unanalyzed class or interface may extend or implement any class or
interface.



2. An unanalyzed method may instantiate an object of any type and call its
constructor.

3. A local variable in an unanalyzed method may point to any object of any
type consistent with its declared type.

4. A call site in an unanalyzed class may call any accessible method of any
class.

5. An unanalyzed method may read or modify any accessible field of any object.
6. An unanalyzed method may read or modify any element of any array.
7. An unanalyzed method may cause the loading and static initialization (i.e.,

execution of the <clinit> method) of any class.
8. An unanalyzed method may throw any exception of any subtype of java.-

lang.Throwable.

The separate compilation assumption enables us to relieve these conservative
assumptions in the following ways.

1. A library class cannot extend or implement an application class or interface.
If it did, then the library class could not be compiled in the absence of the
application classes.

2. An allocation site in a library method cannot instantiate an object whose
run-time type is an application class. The run-time type of the object is
specified in the allocation site, so compilation of the allocation site would
require the presence of the application class.
The only exception to this rule is reflective allocation sites in a library class
(i.e., using Class.forName() and Class.newInstance()) that could possi-
bly create an object of an application class. Since Java semantics do not pre-
vent the library from doing this, our analysis should handle these reflective al-
locations without analyzing the library code. We assume that the library can
reflectively instantiate objects of an application class if the library knows the
name of this particular application class. In other words, if a string constant
corresponding to the name of an application class flows to the library (possi-
bly as an argument to a call to Class.forName() or Class.newInstance()),
then the library can instantiate objects of that class.

3. Our algorithm computes a sound but non-trivial overapproximation of the
abstract objects that local variables of library methods could point to. The
library could create an object whose type is any library class. An object
whose type is an application class can be instantiated only in an application
method (except by reflection). In order for an object created in an appli-
cation method to be pointed to by a local variable of a library method, an
application class must pass the object to a library class in one of the following
ways:

(a) An application method may pass the object as an argument to a call of
a library method. This also applies to the receiver, which is passed as
the this parameter.

(b) An application method called from a library method may return the
object.



(c) The application code may store the object in a field that can be read by
the library code.

(d) If the type of the object is a subtype of java.lang.Throwable, an ap-
plication method may throw the object and a library method may catch
it.

Thus, our algorithm computes a set, LibraryPointsTo, of the abstract ob-
jects allocated in the application that a local variable of a library method
can point to. Implicitly, the library can point to objects whose type is any
library class since these can be created in the library. Only the subset of
application class objects that are passed into the library is included in Li-

braryPointsTo.

4. Two conditions are necessary in order for a call site in a library class to call
a method m in an application class c.

(a) The method m must be non-static and override a (possibly abstract)
method of some library class. Each call site in Java bytecode specifies the
class and method signature of the method to be called. Since the separate
compilation assumption states that the library has no knowledge about
the application, the specified class and method must be in the library,
not the application. The Java resolution rules [22, Section 5.4.3] could
change the specified class to one if its superclasses, but this must also be
a library class due to the previous assumption. Therefore, the only way
in which an application method could be invoked is if it is selected by
dynamic dispatch. This requires the application method to be non-static
and to override the method specified at the call site.

(b) The receiver variable of the call site must point to an object of class c
or a subclass of c such that calling m on that subtype resolves to the
implementation in c. Therefore, an object of class c or of the appropriate
subclass must be in the LibraryPointsTo set.

5. Similar conditions are necessary in order for a library method to read or
modify a field f of an object o of class c created in the application code.

(a) The field f must originally be declared in a library class (though c can
be a subclass of that class, and could therefore be an application class).
Each field access in Java bytecode specifies the class and the name of the
field. This class must be a library class due to the separate compilation
assumption. The Java resolution rules could change the specified class,
but again only to one of its superclasses, which must also be a library
class.

(b) It must be possible for the local variable whose field is accessed to point
to the object o. In other words, the LibraryPointsTo set must contain
the abstract object representing o.

(c) In the case of a field write, the object being stored into the field must also
be pointed to by a local variable in the library. Therefore, its abstraction
must be in the LibraryPointsTo set.

The library can access any static field of a library class, and any field of an
object that was instantiated in the library.



6. If the library has access to an array, it can access any element of it by its
index. This is unlike an instance field, which is only accessible if its name
is known to the library. However, the library is limited to accessing only
the elements of arrays that it has a reference to (i.e., ones that are in the
LibraryPointsTo set). In the case of a write, the object that is written into
the array element must also be in the LibraryPointsTo set.

7. Due to the separate compilation assumption, the library does not contain
any direct references to application classes. Thus the library cannot cause
a static initializer of an application class to be executed except by using
reflection. When determining which static initializers will execute, our algo-
rithm includes those classes that are referenced from application methods
reachable through the call graph, as well as classes that may be instantiated
using reflection as discussed above in point 2.

8. The library can throw an exception either if it creates the exception object
(in which case its type must be a library class) or if the exception object is
created in an application class and passed into the library (in which case its
abstraction appears in the LibraryPointsTo set). We conservatively assume
that the library can catch any thrown exception. Consequently, we add the
abstractions of all thrown exception objects to the LibraryPointsTo set.

In addition to these conditions, our algorithm strictly enforces the restrictions
imposed by declared types.

– When the library calls an application method, the arguments passed in the
call must be in the LibraryPointsTo set, and must also be compatible with
the declared types of the corresponding parameters.

– When an application method calls a library method, the returned object
must be in the LibraryPointsTo set and compatible with the declared return
type of the library method.

– When the library modifies a field, the object it may write into the field must
be compatible with the declared type of the field.

– When an application method catches an exception, only exceptions whose
type is compatible with the declared type of the exception handler are prop-
agated.

– When the LibraryPointsTo set is used to update the points-to set of an
application local variable, only objects compatible with the declared type of
the local variable are included.

4 Cgc Overview

We have implemented a prototype of the application-only call graph construc-
tion approach that we call Cgc, and have made it available at http://plg.

uwaterloo.ca/~karim/projects/cgc/. For ease of modification and experi-
mentation, Cgc is implemented in Datalog.3 Cgc uses a pointer analysis that is

3 Datalog is a logic-based language for (recursively) defining relations.



Fig. 4. An overview of the workflow of Cgc.

based on the context-insensitive pointer analysis from the Doop framework [6].
However, the analysis is independent of Datalog, and could be transcribed into
Java to be embedded into an analysis framework such as Soot or Wala. We
have also implemented summary tools that summarize the call graphs generated
by Spark and Doop. Each summary tool takes a list of application classes and
the call graph as input. The output is a call graph with the library methods
summarized into one node in the graph. Therefore, call graphs from Spark,
Doop and Cgc can be compared. Additionally, Cgc can export the generated
call graph as a GXL [16] document 4 or a directed DOT [31] graph file. The DOT
graph can be visualized using Graphviz [13] or converted by Cgc to a PNG or
a PS file that can be visualized using any document previewer.

4.1 Workflow

Figure 4 shows an overview of the work flow of Cgc. Like Doop, Cgc uses a
fact generator based on Soot to preprocess the input code and generate the
input facts to the Datalog program. The fact generator receives a collection of
input files and a specification of the set of application classes. The rest of the
classes are considered library classes. The fact generator then generates two sets
of facts. The first set is for the application classes and contains all details about
those classes: signatures for classes, methods, fields as well as facts about method

4 The DTD schema can be found at http://plg.uwaterloo.ca/~karim/projects/

cgc/schemas/callgraph.xml



bodies. The second set is dedicated to the library and contains the following: sig-
natures for classes, methods, and fields in the library classes that are referenced
in the application and their (transitive) superclasses and superinterfaces. We
generate a third set of facts which holds information about reflection code in the
application. This set is generated using TamiFlex [5], a tool suite that records
actual uses of reflection during a run of a program, and summarizes them in a
format suitable as input to a static analysis. Cgc uses the output of TamiFlex
to model calls to java.lang.reflect.Method.invoke(), and application class
name string constants to model reflective class loading. We plan to add more
support for other reflective application code in the future.

The three sets of facts along with the Datalog rules that define our pointer
analysis are then used to initialize a LogicBlox [24] database. Once the database
is created and the analysis completes, Cgc queries it for information about the
call graph entry points and the various types of call graph edges: application-
to-application edges, application-to-library edges, and library-to-application call
back edges. Finally, Cgc uses those derived facts to generate the call graph for
the given input program files and to save it as a GXL document.

4.2 Implementation

We will now outline the main parts of the Cgc analysis implementation, listing
the most important relations that are generated.

Object Abstraction. For precision, Cgc uses a separate abstract object for
each allocation site in the application classes. The abstract object represents all
objects allocated at the site; it has an associated run-time type.

Cgc must use a coarser abstraction to represent objects allocated in the
library. Cgc first computes the set L of all library classes and interfaces refer-
enced in the application and their transitive superclasses and superinterfaces. It
then creates one abstract object for each class in L.

The meaning of an abstract object in L is subtle. The abstraction must
represent all objects created in the library, of any type, but L is limited to
those types referenced in the application. Therefore, each abstract object c ∈ L
represents all concrete objects created in the library such that if the actual run-
time type of the object is c′, then c is the closest supertype of c′ that is in
L. In other words, each concrete object is represented by its closest supertype
that is referenced in the application. From the point of view of analyzing the
application, an object of type c′ created in the library is treated as if its type
were c. If the application accesses a field of the object, it must be a field that was
already declared in c or one of its superclasses. Accessing a field declared only
in c′ would require the application to reference class c′. The situation is different
for resolving a call to a library method as the analysis just models all library
methods as a single node. Therefore, in the case of a call site in the application,
the analysis does not need to determine which library method of c′ or all its
superclasses will be invoked.



Abstract objects allocated in the application always have a concrete class as
their run-time type. An important but subtle detail is that the analysis must
include abstract objects even for library classes that are declared abstract. This
is because the actual run-time type of the concrete object could be a subtype of
the abstract class, and not referenced by the application.

Points-to Sets. Cgc uses the relations VarPointsTo and StaticFieldPoi-

ntsTo to model the points-to sets of local variables and static fields within the
application code, respectively. Library code cannot directly read object refer-
ences from these sets. The relations InstanceFieldPointsTo and ArrayIndex-

PointsTo model the points-to sets of the fields of each abstract object and, in
the case of an array, its array elements. The analysis distinguishes individual
fields, but does not distinguish different elements of the same array.

We define a new relation, LibraryPointsTo, which models the set of abstract
objects that the library may reference. This set is initialized with all of the
abstract objects created in the library. In addition, the analysis adds abstract
objects that are passed into a library method, returned to a library method from
an application method, or stored in a static field of a library method. Finally, the
analysis adds abstract objects that the library may read out of instance fields
according to the conditions described in Section 3.

The analysis also includes rules to update InstanceFieldPointsTo and Ar-

rayIndexPointsTo in order to model the instance field and array element writes
that may occur within the library.

In addition to objects, the library can also instantiate arrays. The analysis
adds to LibraryPointsTo an abstract array of type T[] whenever the application
calls a library method whose return type is T[], or the library calls an application
method that takes T[] as a parameter.

Points-to Subset Constraints. Cgc defines a relation called Assign that
represents subset constraints between the points-to sets of local variables in
the application code. This relation models assignment statements in reachable
methods, and parameter passing and return at each method call edge. Cgc
defines two additional relations, AssignToLibrary and AssignLibraryTo, for
assignments crossing the boundary between the application and the library. This
includes parameter passing and return, as well as reading from and writing to
static library fields within the application code.

For precision, we have found that it is very important to enforce declared
types at the boundary between the application and the library. Since the in-
put to Cgc is Java bytecode, which is typed, there are few assignments (both
intra-procedural and inter-procedural) within the application where explicit type
checks are necessary (except for explicit casts in the bytecode). However, because
the LibraryPointsTo set represents all references within the library, it does not
have a declared type. Thus, at every assignment out of the library into an ap-
plication local variable, instance/static field, or array element, Cgc checks that
the abstract objects respect the declared type of the destination.



Call Graph Edges. Cgc defines the ApplicationCallGraphEdge relation to
model calls within application methods. Additionally, two special relations, Li-
braryCallGraphEdge and LibraryCallBackEdge are defined to represent calls
into and back out of the library. For call sites in the application, the points-to set
of the receiver variable is used to resolve the dynamic dispatch and determine
which methods may be called. Constructing the LibraryCallBackEdge set is
more interesting since Cgc knows nothing about the call site within the library.
Following the conditions defined in Section 3, Cgc uses the LibraryPointsTo

set as an overapproximation of the possible receiver objects. Cgc considers the
signatures of all application methods that override a library method as possible
targets for a LibraryCallBackEdge.

Cgc computes the Reachable set of all methods that are transitively reach-
able through the call edges. The set contains application methods only.

4.3 Special Handling of java.lang.Object

Every constructor calls the constructors of its transitive superclasses. Therefore,
every object ever created flows to the constructor of java.lang.Object and
would be accessible to the library. However, this particular constructor is empty;
it cannot leak a reference to other library code. The analysis therefore makes
a special exception so that objects passed to this constructor are not added to
LibraryPointsTo. The same exception is made for all other methods of java.-
lang.Object except toString(). We have determined by manual inspection
that these methods do not leak object references to the library. Since the java.-
lang.Object.clone() method returns a copy if its receiver, we model it as
follows: at any call site of the form a = b.clone(), all references pointed to by
b flow to a.

5 Experiments

We evaluate Cgc by comparing its precision and performance to that of Spark
and Doop on two benchmark suites. We analyzed both the DaCapo benchmark
programs, v.2006-10-MR2 [3], and the SPEC JVM 98 benchmark programs [29]
with JDK 1.4 (jre1.4.2.11) which is larger than JDK 1.3 used by Lhoták and
Hendren [20] and similar to JDK 1.4 used by Bravenboer and Smaragdakis [6].
We also evaluate the soundness of the call graphs generated by Cgc by compar-
ing them to the dynamic call graphs recorded at run time using the *J tool [11].
We ran all of the experiments on a machine with four dual-core AMD Opteron
2.6 GHz CPUs (runnning in 64-bit mode) and 16 GB of RAM. We exclude the
benchmarks fop and eclipse from our evaluation because they do not include all
code that they reference, so we were unable to analyze them with Spark and
Doop. We exclude the benchmark jython because it heavily uses sophisticated
forms of reflection, making any static analysis impractical.



5.1 Preliminaries and Experimental Setup

Since we are comparing the generated graph from the three different tools, Cgc,
Spark and Doop, we have to run them with similar settings so that the gen-
erated graphs are comparable. Therefore, there is a common properties file that
holds the values for the input files, list of application classes, the benchmark to
run and the name of the main class to be used across the three tools. The main
class is an application class whose main() method is considered the entry point
of the call graph.

Each experiment run is executed by a bash shell script that takes this prop-
erties file as an input. The script then runs the three tools consecutively and
collects the results. For each benchmark program, the script records some statis-
tics about the elapsed time for each tool to finish execution and the number
of the various types of call graph edges generated. The script also reads in the
dynamic call graph for the corresponding benchmark program to be used in eval-
uating the soundness of all three static analysis tools. The dynamic call graphs
are generated using *J [11], a tool which attaches to the Java VM and records
all method calls that occur in an actual run of the given benchmark program.
The bash script also produces GXL files for the generated call graphs for Cgc,
Spark, Doop, and the dynamic call graphs. The script then computes and
records the differences between them. This is done by generating four difference
graphs: Cgc-Spark, Spark-Cgc, Cgc-Doop, and Doop-Cgc. A difference
graph A-B is a graph that contains all of the edges that are in A and not in B.

The *J tool records a call from method a to method b if the method b ever ex-
ecutes on a thread during the execution of method a on the same thread. There
are several situations in which the Java VM triggers such a method execution
that are not due to method calls. We remove these edges from the *J call graph.
First, we remove edges to the methods java.lang.ClassLoader.loadClass-

Internal() and java.lang.ClassLoader.checkPackageAccess(), which are
called internally by the Java VM. We also remove edges to static initializers
(<clinit>), because Cgc treats static initializers as entry points, whereas *J
treats them as methods that are called. Nevertheless, Cgc considers static ini-
tializers as reachable methods and analyzes their effect, including any method
calls that they make.

In addition, while converting Spark’s call graphs to Cgc’s format for com-
parison, we convert NewInstanceEdges to LibraryCallBackEdges. In Spark,
NewInstanceEdges represent implicit calls to constructors from the method
java.lang.Class.newInstance(). In a Spark call graph, the source of those
edges is the calling site of the method java.lang.Class.newInstance(). On
the other hand, those edges are LibraryCallBackEdges in Cgc. Therefore, this
conversion allows us to do a fair comparison between Spark and Cgc by resolv-
ing any inconsistencies in the way both model NewInstanceEdges.

In the following subsections, we evaluate and compare the soundness, pre-
cision, and size of the call graphs generated by the static tools, as well as the
performance of the tools.



Table 1. Comparing the soundness of Cgc, Doop, and Spark with respect to Appli-

cationCallGraphEdges.
antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Dynamic 3066 3733 482 1505 565 435 1894 2543 39 36 520 2384 5 317

Dynamic-Cgc 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dynamic-Doop 0 0 0 325 244 193 153 250 0 0 0 0 0 0

Dynamic-Spark 0 0 0 59 0 155 0 59 0 0 0 0 0 0

Table 2. Comparing the soundness of Cgc, Doop, and Spark with respect to Li-

braryCallGraphEdges.
antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Dynamic 372 475 168 119 148 99 157 325 4 17 76 148 5 13

Dynamic-Cgc 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Dynamic-Doop 0 0 0 5 53 45 43 42 0 0 0 0 0 0

Dynamic-Spark 0 0 0 1 0 27 0 9 0 0 0 0 0 0

Table 3. Comparing the soundness of Cgc, Doop, and Spark with respect to Li-

braryCallBackEdges.
antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Dynamic 11 49 7 3 13 5 36 85 0 1 0 6 3 0

Dynamic-Cgc 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dynamic-Doop 3 0 0 1 6 3 29 78 0 0 0 0 0 0

Dynamic-Spark 0 0 0 1 4 3 3 28 0 0 0 0 0 0

5.2 Call Graph Soundness

The separate compilation assumption makes it easier to reason soundly about
library code than whole-program approaches. Whereas a whole-program analysis
must soundly model all details of the library, Cgc needs only to soundly handle
its interface. We evaluate the soundness of Cgc, Doop, and Spark by counting
the call graph edges that are present in the dynamic call graph, but missing
from the call graphs generated by each static tool. These counts are shown in
the lines Dynamic-Cgc, Dynamic-Doop, and Dynamic-Spark in Tables 1, 2
and 3.

This comparison shows that the call graphs generated by Cgc soundly in-
clude all of the call edges that were dynamically observed at run time by *J,
except for one single call edge from the application to the library in the luse-
arch benchmark (see Table 2). The dynamic call graph for lusearch has a Li-

braryCallGraphEdge from the method org.apache.lucene.index.FieldIn-

fos.fieldName() to the constructor of java.lang.NullPointerException.
There is no statement in this method that constructs this object, but the method
tries to access the field of a null object. As a result, the Java VM creates a
java.lang.NullPointerException and executes its constructor. The exception
is caught elsewhere in the benchmark. This type of unsoundness can be resolved
by improving our analysis to model the behavior of the Java VM by checking
for when an application attempts to dereference null. This same unsoundness
is also found in both Doop and Spark.



Table 4. Comparing the precision of Cgc with respect to ApplicationCallGraph-

Edges.
antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Cgc 6276 14430 1879 9015 923 1998 4594 11628 40 47 653 8194 6 400

Doop 6293 12433 1811 6245 449 1507 3956 8911 40 47 646 8188 6 400

Spark 6299 13419 6732 7792 1412 2724 6893 13020 40 47 646 8519 6 400

Cgc-Doop 13 1997 68 2445 230 298 485 2654 0 0 7 6 0 0

Cgc-Spark 2 1829 15 1394 0 250 179 1356 0 0 7 0 0 0

Table 5. Comparing the precision of Cgc with respect to LibraryCallGraphEdges.
antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Cgc 649 874 571 982 243 345 431 1149 13 24 107 313 7 34

Doop 649 841 529 787 152 251 348 818 13 24 98 313 6 34

Spark 661 885 1060 869 336 392 797 1055 13 23 97 317 6 34

Cgc-Doop 0 33 42 190 38 50 40 289 0 0 9 0 1 0

Cgc-Spark 0 10 1 139 0 29 3 171 0 1 10 2 1 0

Table 6. Comparing the precision of Cgc with respect to LibraryCallBackEdges.
antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Cgc 47 190 95 663 27 48 114 696 0 2 10 25 12 1

Doop 39 84 55 24 15 26 37 61 0 2 0 23 8 0

Spark 73 223 490 69 132 146 135 464 10 12 10 41 64 10

Cgc-Doop 5 106 40 638 6 19 48 557 0 0 10 2 4 1

Cgc-Spark 0 19 8 616 1 5 25 307 0 0 10 0 1 1

5.3 Call Graph Precision

In order for a call graph to be useful, it must also be precise in addition to
being sound. We now compare the precision of call graphs generated by Cgc to
those generated by Doop and Spark. We would expect Cgc to be at least as
imprecise as Doop and Spark, since it makes conservative assumptions about
the library code instead of precisely analyzing it. Since we found some dynamic
call edges that were missing from the call graphs generated by both Doop and
Spark (and one edge from Cgc), we first correct this unsoundness by adding the
missing dynamic call edges to the static call graphs. This enables us to compare
the precision of the static call graphs by counting only spurious call edges, and
to avoid confounding due to differences in soundness. In Tables 4, 5 and 6, the
quantity Cgc-Doop represents the number of edges in the call graph generated
by Cgc that are missing in the call graph generated by Doop, and are also not
present in the dynamic call graph. The quantity Cgc-Spark is defined similarly.
We say that Cgc is precise when the call graph that it generates is identical to
that generated through whole program analysis by Doop or Spark.

Application Call Graph Edges. Table 4 shows that Cgc generates precise
call graphs with respect to ApplicationCallGraphEdges when compared to
both Doop and Spark for compress, db, jess, and raytrace. Additionally, Cgc
generates precise call graphs for luindex and javac when compared to Spark. For
all benchmark programs, Cgc generates a median of 41 extra ApplicationCall-

GraphEdges (min: 0, max: 2656, median: 40.5) when compared to Doop and a



median of 5 extra ApplicationCallGraphEdges (min: 0, max: 1829, median: 4.5)
when compared to Spark. Both medians are negligible as they represent 2.42%
and 0.13% of the median number of ApplicationCallGraphEdges generated by
Doop and Spark respectively.

Library Call Graph Edges. Table 5 shows that Cgc generates precise call
graphs with respect to LibraryCallGraphEdges when compared to Doop for
antlr, compress, db, javac, and raytrace. On the other hand, Cgc generates
precise call graphs when compared to Spark for antlr, luindex, compress, and
raytrace. Across all benchmark programs, Cgc generates a median of 21 extra
LibraryCallGraphEdges (min: 0, max: 288, median: 21) when compared to
Doop as opposed to a median of 2 extra LibraryCallGraphEdges (min: 0,
max: 171, median: 1.5) when compared to Spark.

Library Call Back Edges. Table 6 shows that Cgc generates precise call
graphs with respect to LibraryCallBackEdges when compared to Doop and
Spark for compress and db. Additionally, Cgc generates precise call graphs for
antlr and javac when compared to Spark. In general, Cgc generates a median of
8 extra LibraryCallBackEdges (min: 0, max: 638, median: 8) when compared
to Doop and a median of 3 extra LibraryCallBackEdges (min: 0, max: 616,
median: 7.5) when compared to Spark. The former represents 72.9% as opposed
to only 2.53% for the latter, of the median number of LibraryCallBackEdges

generated by Doop and Spark respectively. In other words, the majority of
LibraryCallBackEdges generated by Cgc are spurious compared to Doop.
These extra edges are the root cause of the small amounts of imprecision that
we observed in the ApplicationCallGraphEdges and LibraryCallGraphEdges.

We further investigate the specific causes of the extra LibraryCallBack-

Edges in the Cgc call graph. In Tables 7 and 8, we categorize these edges by
the name of the application method that is being called from the library. In
particular, we are interested to know whether the library calls a wide variety of
application methods, or whether the imprecision is limited to a small number
of well-known methods, which could perhaps be handled more precisely on an
individual basis.

Table 7 shows that the most frequent extra LibraryCallBackEdges in Cgc
when compared to Doop target the commonly overridden methods (in descend-
ing order): clone, <init>, toString, equals, remove, and hashCode. The num-
ber of extra LibraryCallBackEdges generated by Cgc compared to Spark is
smaller than that compared to Doop. Table 8 shows that the most frequent
extra LibraryCallBackEdges in Cgc compared to Spark target the methods:
<init>, finalize, run, close, write, and remove.

The constructor <init> ranks highly in hsqldb, pmd, and xalan. This is
because these benchmarks use class constants. Cgc conservatively assumes that
if a class constant is created (using java.lang.Class.forName()), an object of
that type might also be instantiated and its constructor called.



Table 7. Frequencies of extra LibraryCallBackEdges in Cgc when compared to Doop
(Cgc-Doop). Other methods include all methods that are encountered only in one
benchmark program.
Method antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace Total

clone 4 50 25 3 4 11 1 98

<init> 20 19 33 72

toString 2 2 7 2 2 2 17

equals 1 1 6 4 2 2 16

remove 12 2 14

hashCode 4 2 4 2 1 13

write 2 9 11

run 4 1 2 1 8

close 5 3 8

printStackTrace 5 2 7

next 4 1 5

getAttributes 1 3 4

getType 1 3 4

read 2 1 3

clearParameters 1 2 3

accept 1 1 2

previous 1 1 2

Other 0 37 8 585 0 3 16 486 0 0 10 0 4 0 1149

Total 5 106 40 638 6 19 48 557 0 0 10 2 4 1 1436

Table 8. Frequencies of extra LibraryCallBackEdges in Cgc when compared to Spark
(Cgc-Spark). Other methods include all methods that are encountered only in one
benchmark program.
Method antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace Total

<init> 19 19 48 86

finalize 3 1 4 3 11

run 4 1 2 1 8

close 5 3 8

write 2 6 8

remove 5 2 7

getType 1 2 3

clearParameters 1 2 3

previous 1 1 2

Other 0 13 8 580 0 0 4 241 0 0 10 0 1 0 857

Total 0 19 8 616 1 5 25 307 0 0 10 0 1 1 993

The benchmark programs hsqldb and xalan have the highest frequency of
imprecise LibraryCallBackEdges. In the case of hsqldb, most of those imprecise
LibraryCallBackEdges are to methods of classes in the package org.hsqldb.-

jdbc (Doop = 560, Spark = 555). In xalan, most of the imprecise Library-

CallBackEdges are to methods of classes in the packages org.apache.xalan.*
(Doop = 276, Spark = 184) and org.apache.xml.* (Doop = 263, Spark
= 112). Thus, in both of these benchmarks, the high imprecision is due to the
fact that each benchmark contains its own implementation of a large subsystem
(JDBC and XML) whose interface is defined in the library.

5.4 Call Graph Size

As we mentioned earlier, call graphs are a key prerequisite to all interprocedu-
ral analyses. Therefore, any change in the size of the call graph will affect the
performance of the analyses that use it as input. Since Cgc overapproximates
the generated call graph, we evaluate the size of the generated call graph (in



Table 9. Comparing the size of the call graph generated by Cgc, Doop and Spark
for the same input program.

antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Cgc 6,972 15,494 2,545 10,660 1,193 2,391 5,139 13,473 53 73 770 8,532 25 435

Doop 6,981 13,358 2,395 7,056 616 1,784 4,341 9,790 53 73 744 8,524 20 434

Spark 7,033 14,527 8,282 8,730 1,880 3,262 7,825 14,539 63 82 753 8,877 76 444

Cgc/Doop 0.99 1.16 1.06 1.51 1.94 1.34 1.18 1.38 1 1 1.03 1 1.25 1

Cgc/Spark 0.99 1.07 0.31 1.22 0.63 0.73 0.66 0.93 0.84 0.89 1.02 0.96 0.33 0.98

terms of total number of edges) compared to those of Doop and Spark. Table
9 shows that Cgc generates call graphs of equal or smaller size to Doop and
Spark for the benchmark programs antlr, chart, compress, db, jack, javac, and
raytrace. Additionaly, Cgc generates call graphs of smaller size than Spark for
the benchmark programs bloat, luindex, lusearch, pmd, xalan, and jess.

It is counterintuitive that the call graphs generated by Cgc are smaller than
those generated by Spark, which analyzes the whole program precisely. This
result is primarily due to imprecisions in Spark. To model objects created by
the Java VM or by the Java standard library using reflection, Spark uses special
abstract objects whose type is not known (i.e., any subtype of java.lang.-

Object). Spark does not filter these objects when enforcing declared types,
so these objects pass freely through casts and pollute many points-to sets in
the program. This affects the precision of the points-to sets of the method call
receivers and leads to many imprecise call graph edges in Spark. The extent of
this imprecision spark was a surprise to the second author, who is also the author
of Spark. In response to this observation, we plan to improve the precision of
Spark by redesigning the mechanism that it uses to model these objects.

5.5 Analysis Performance

We evaluate the performance gain of not analyzing the method bodies of the
library code. There are two major aspects that can measure the performance of
an analysis: execution time, and the disk footprint of the analysis database. We
define execution time to be the time taken by the analysis to finish computing the
points-to sets and constructing the call graph for the input program. We measure
this time by using the time Linux command [23] that measures the time taken
by a given program command to finish execution. Based on the numbers shown
in Figure 5, we can deduce that Cgc is approximately 3.5x faster than Doop
(min: 0.86x, max: 18.42x, median: 3.45x), and almost 7x faster than Spark
(min:0.93x, max: 42.7x, median: 6.56x).

Figure 6 shows that Cgc achieves this performance gain in execution time
while using a database of facts approximately 7x smaller in size than Doop (min:
2.19x, max: 31.75x, median: 6.83x). We measure the size of the database of facts
used by Cgc by calculating the disk footprint of the LogicBlox database files
after the analysis completes. We calculate the size of the database of facts for
Doop similarly and compare it against its Cgc counterpart. In all benchmarks,
Doop has a larger disk footprint as it analyzes the method bodies for all the



Fig. 5. Comparing the time taken by the analysis in each of Cgc, Doop and Spark
to generate the call graph for each program from the DaCapo and SPEC JVM bench-
marks. This only includes the time taken to compute the points-to sets as well to
construct the call graph.

Fig. 6. The size of Cgc’s facts database compared to Doop’s.

library classes while Cgc only analyzes the method signatures for the classes
referenced in the application (and their transitive superclasses and superinter-
faces). It is difficult to report similar statistics for Spark as it uses a different
model to represent the facts its analysis uses to construct the call graph for an
input program.

6 Related Work

Early work on call graph construction used only simple approximations of run-
time types to model dynamic dispatch. Dean et al. [9] formulate class hierarchy
analysis (CHA), which does not propagate object types. CHA uses only the sub-
class hierarchy to determine method targets. Bacon and Sweeney [2] define rapid
type analysis (RTA), a refinement of CHA that considers as possible receivers
only classes that are instantiated in the reachable part of the program. Sundare-
san et al. [30] introduce an even more precise approach, variable type analysis
(VTA). Like points-to analysis, it generates subset constraints and propagates
points-to sets to approximate the run-time types of receivers.

Tip and Palsberg [32] provide a scalable propagation-based call graph con-
struction algorithm. Separate object sets for methods and fields are used to
approximate the run-time values of expressions. The algorithm is capable of an-
alyzing incomplete applications by associating a single set of objects, SE , with



the outside world (i.e., the library). The algorithm conservatively assumes that
the library calls back any application method that overrides a library method.
The set SE is then used to determine the set of methods that the external code
can invoke by the dynamic dispatch mechanism. A separate set of objects SC is
associated with an external (i.e., library) class if the objects passed to the meth-
ods in class C interact with other external classes in limited ways. An example
of this case is the class java.util.Vector. This step requires the analysis of
the external classes to model the separate propagation sets. In addition, this
technique varies based on the library dependencies of the input program.

The previous algorithm was later used by Tip et al. [33] to implement Jax, an
application extractor for Java. The external object set SE inspired the Library-
PointsTo relation in our algorithm. Expanding on the initial idea of analyzing
incomplete applications, we formulated the separate compilation assumption,
and worked out in detail the specific assumptions flowing from it. We also de-
rived a set of constraints from those assumptions. In addition, we have empiri-
cally analyzed the precision and soundness of the partial call graphs generated
compared to call graphs generated by analyzing the whole program.

Grothoff et al. [14] present Kacheck/J, a tool that is capable of identifying
accidental leaks of sensitive objects. Kacheck/J achieves that by inferring the
confinement property [35, 36, 38] for Java classes. A Java class is considered
confined when objects of its type are encapsulated in its defining package. The
analysis needs only to analyze the defining package of the given Java class to infer
its confinement property. That is similar to the way Cgc needs only to analyze
the application classes to construct its call graph. Although the set of application
classes can be thought of as one defining package, determining the confinement
property for the classes in this package is not enough to construct the call graph.
Constructing the call graph would still require the points-to set information.
As part of the confinement analysis, Kacheck/J identifies anonymous methods
which are guaranteed not to leak a reference to their receiver. A similar notion
and analysis could be used in Cgc to identify library methods that do not retain
permanent references to their arguments, in order to improve the precision of
the LibraryPointsTo set. In addition to the analysis that infers the confinement
property, there is a large body of work on type systems that enforce encapsulation
by restricting reference aliasing [8, 10, 12, 25].

Our work is also related to the work of Zhang and Ryder [37]. They pro-
vide a fine-tuned data reachability algorithm to resolve library call-backs, V a −
DataReachft. Their algorithm also distinguishes library code from application
code in the formulation of the constraints. The fundamental difference is that
the purpose of their algorithm is to construct a more precise call graph than a
whole-program analysis by analyzing the library more thoroughly. Each call into
the library is treated as an isolated context. In contrast, our aim is not to ana-
lyze the library at all, and generate a possibly less precise but sound call graph.
In Cgc, we make up for not analyzing the library by enforcing the restrictions
that follow from the separate compilation assumption.



Rountev et al. [26] present a general approach for adapting whole-program
class analyses to operate on program fragments. Whereas our aim is to analyze
the application without the library, they soundly analyze the library without
the application. The authors create placeholders to serve as representatives for
and simulate potential effects of unknown code. The fragment class analysis then
adds the placeholders to the input classes and treats the result as a complete
program which can be analyzed using whole-program class analyses. Although
Rountev et al. proved that their fragment class analysis is correct, the precision
of the fragment analysis is variable as it significantly depends on the underlying
whole-program analysis. Therefore, a CHA-dependent fragment analysis is less
precise than an RTA-dependent fragment analysis. In contrast, the precision of
the call graph construction in Cgc depends only on the separate compilation
assumption and its consequences.

Doop [6] implements various pointer analysis algorithms for Java programs,
all defined declaratively in Datalog. Doop constructs the call graph on-the-fly
while computing the points-to sets. However, there is no way to exclude some
classes (e.g., the library classes) from the analysis as Doop analyzes all of the
input program. The pointer analysis in Cgc is an extended version of Doop’s
context-insensitive pointer analysis. The major difference is the introduction of
the library summary relation and the necessary associated Datalog rules.

Lhoták and Hendren introduced Spark [20], a flexible framework for exper-
imenting with points-to analyses for Java programs. Spark provides a Soot
transformation that constructs the call graph of the input program on-the-fly
while calculating the points-to sets. It is possible to setup up the Soot classes so
that Spark ignores some of the input classes. However, this is usually achieved
through setting the allow phantom refs option to true which means that the
ignored class will be completely discarded. Therefore, crucial information about
the signatures of the classes, methods, and fields is lost which would render the
generated call graph unsound. Thus, Spark does not support excluding some of
the input classes (e.g., the library classes) from the process of constructing the
call graph despite the demand in the Soot community [4].

Wala [17] is a static analysis library from IBM Research designed to support
various pointer analysis configurations. Wala is capable of building a call graph
for a program by performing pointer analysis with on-the-fly call graph construc-
tion to resolve the targets of dynamic dispatch calls. Wala provides the option
of excluding some classes or packages while constructing the call graph. In fact,
Wala excludes all the user-interface related packages from the Java runtime li-
brary by default when constructing a call graph. When this option is set, Wala
limits the scope of its pointer analysis to the set of included classes. This ignores
any effects the excluded classes might have on the calculation of the points-to
sets. Therefore, the generated call graphs may be unsound and/or imprecise.
Moreover, it is impossible to exclude crucial classes (e.g., java.lang.Object)
from the analysis as this will cause an exception to be thrown. We plan to empir-
ically compare the precision, soundness, and speed of our call graph construction
algorithm with Wala in future work.



7 Conclusions and Future Work

We have proposed Cgc, a tool that generates an application-only call graph
with the library code represented as one summary node. The main contributions
are: (1) the separate compilation assumption that defines specific assumptions
about the effects that the library code could have on the various application
entities; and (2) empirically showing that the separate compilation assumption
is sufficient for constructing sound (with respect to dynamic call graphs) and
precise (with respect to call graphs generated by Doop and Spark) application-
only call graphs. Experimental results show that not analyzing the library code
does not affect the soundness of the resulting call graph. In fact, in many cases
(antlr, hsqldb, luindex, lusearch, pmd, and xalan) Cgc was found to be more
sound than Doop and Spark. In many cases, the call graphs generated by
Cgc are almost as precise as call graphs generated by Doop, and sometimes
more precise than Spark. However, when the application implements a large
subsystem whose interface is defined in the library (e.g., JDBC in hsqldb and
XML in xalan), Cgc loses precision compared to a whole-program analysis.

Remaining imprecisions are mainly due to objects that are passed into the
library, but the library does not retain permanent references to them. This could
be remedied by identifying, either manually or with an analysis, specific Java
standard library methods known not to retain permanent references. Cgc would
then not add objects passed into these methods to the LibraryPointsTo set.
This approach was also suggested by Tip and Palsberg [32].

Further improvements could be achieved by defining multiple libraries that
have dependencies between them. Each library will then have its own Library-

PointsTo set that can interact with other LibraryPointsTo sets or points-to sets
of application entities. Although this might improve the remaining imprecision in
Cgc, it requires extensive analysis for the library code to define those multiple
libraries. Moreover, it might not be practical to apply this technique for user
libraries as they vary greatly from one application to another.

To make the analysis more useful to users, we plan to create an Eclipse
plugin that wraps our analysis and the tools we created alongside. The plugin
will provide users with a suitable user interface for presenting the analysis results
as well as navigating the call graph. We are also planning to embed the analysis
into some of the widely used analysis frameworks such as Soot and Wala.

References

1. Agrawal, G., Li, J., Su, Q.: Evaluating a demand driven technique for call graph
construction. In: 11th International Conference on Compiler Construction. pp. 29–
45. CC ’02 (2002)

2. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls.
In: 11th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications. pp. 324–341. OOPSLA ’96 (1996)

3. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,



Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmark-
ing development and analysis. In: 21st Annual ACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages, and Applications. pp. 169–190.
OOPSLA ’06 (Oct 2006)

4. Bodden, E.: Soot-list: Stack overflow when generating call graph. http://www.

sable.mcgill.ca/pipermail/soot-list/2008-July/001831.html (May 2011)
5. Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., Mezini, M.: Taming reflection:

Aiding static analysis in the presence of reflection and custom class loaders. In:
33rd International Conference on Software Engineering. pp. 241–250. ICSE ’11
(2011)

6. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisti-
cated points-to analyses. In: 24th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. pp. 243–262. OOPSLA ’09
(2009)

7. Chatterjee, R., Ryder, B.G., Landi, W.A.: Relevant context inference. In: 26th
ACM SIGPLAN-SIGACT symposium on Principles Of Programming Languages.
pp. 133–146. POPL ’99 (1999)

8. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: 13th ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications. pp. 48–64 (1998)

9. Dean, J., Grove, D., Chambers, C.: Optimization of object-oriented programs using
static Class Hierarchy Analysis. In: 9th European Conference on Object-Oriented
Programming. pp. 77–101. ECOOP ’95 (1995)

10. Dietl, W., Müller, P.: Universes: Lightweight ownership for JML. Journal of Object
Technology 4(8), 5–32 (2005)

11. Dufour, B., Hendren, L., Verbrugge, C.: *J: a tool for dynamic analysis of Java
programs. In: Companion of the 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications. pp. 306–
307. OOPSLA ’03 (2003)

12. Genius, D., Trapp, M., Zimmermann, W.: An approach to improve locality using
sandwich types. In: Types in compilation: Second International Workshop, TIC’98.
Lecture Notes in Computer Science, vol. 1473, pp. 194–214 (1998)

13. Graphviz - Graph Visualization Software: http://www.graphviz.org/ (November
2011)

14. Grothoff, C., Palsberg, J., Vitek, J.: Encapsulating objects with confined types.
In: 16th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications. pp. 241–255. OOPSLA ’01 (2001)

15. Holmes, R., Notkin, D.: Identifying program, test, and environmental changes that
affect behaviour. In: International Conference on Software Engineering. ICSE ’11,
vol. 10 (2011)

16. Holt, R., Schürr, A., Sim, S.E., Winter, A.: Graph eXchange Language. http:

//www.gupro.de/GXL/dtd/gxl-1.1.html (November 2011)
17. IBM: T.J. Watson Libraries for Analysis WALA. http://wala.sourceforge.net/

(May 2011)
18. JUnit Home Page: http://junit.sourceforge.net (December 2011)
19. Lhoták, O.: Comparing call graphs. In: 7th ACM SIGPLAN-SIGSOFT Workshop

on Program Analysis for Software Tools and Engineering. pp. 37–42. PASTE ’07
(2007)

20. Lhoták, O., Hendren, L.: Scaling Java points-to analysis using SPARK. In: 12th
International Conference on Compiler Construction. pp. 153–169. CC’03 (2003)



21. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to
analysis using a BDD-based implementation. ACM Trans. Softw. Eng. Methodol.
18, 3:1–3:53 (October 2008)

22. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley,
Reading, MA, USA, second edn. (1999)

23. Linux User’s Manual: time(1). http://www.kernel.org/doc/man-pages/online/
pages/man1/time.1.html (October 2011)

24. LogicBlox Home Page: http://logicblox.com/ (November 2011)
25. Noble, J., Vitek, J., Potter, J.: Flexible alias protection. In: ECOOP ’98 — Object-

Oriented Programming: 12th European Conference. Lecture Notes in Computer
Science, vol. 1445, pp. 158–185 (1998)

26. Rountev, A., Milanova, A., Ryder, B.G.: Fragment class analysis for testing of
polymorphism in Java software. IEEE Trans. Softw. Eng. 30, 372–387 (June 2004)

27. Rountev, A., Ryder, B.G., Landi, W.: Data-flow analysis of program fragments.
In: 7th European Software Engineering Conference held jointly with the 7th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. pp.
235–252. ESEC/FSE-7 (1999)

28. Sreedhar, V.C., Burke, M., Choi, J.D.: A framework for interprocedural optimiza-
tion in the presence of dynamic class loading. In: ACM SIGPLAN 2000 Conference
on Programming Language Design and Implementation. pp. 196–207. PLDI ’00
(2000)

29. Standard Performance Evaluation Corporation: SPEC JVM98 Benchmarks. http:
//www.spec.org/jvm98/ (May 2011)

30. Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R., Lam, P., Gagnon,
E., Godin, C.: Practical virtual method call resolution for Java. In: 15th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications. pp. 264–280. OOPSLA ’00 (2000)

31. The DOT Language: http://www.graphviz.org/content/dot-language (Novem-
ber 2011)

32. Tip, F., Palsberg, J.: Scalable propagation-based call graph construction algo-
rithms. In: 15th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications. pp. 281–293. OOPSLA ’00 (2000)

33. Tip, F., Sweeney, P.F., Laffra, C., Eisma, A., Streeter, D.: Practical extraction
techniques for Java. ACM Trans. Program. Lang. Syst. 24, 625–666 (November
2002)

34. Vallée-Rai, R., Gagnon, E., Hendren, L.J., Lam, P., Pominville, P., Sundaresan,
V.: Optimizing Java bytecode using the soot framework: Is it feasible? In: 9th
International Conference on Compiler Construction. pp. 18–34. CC ’00 (2000)

35. Vitek, J., Bokowski, B.: Confined types. In: 1999 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications. pp. 82–96
(1999)

36. Vitek, J., Bokowski, B.: Confined types in Java. Softw., Pract. Exper. 31(6), 507–
532 (2001)

37. Zhang, W., Ryder, B.G.: Automatic construction of accurate application call graph
with library call abstraction for Java: Research Articles. J. Softw. Maint. Evol. 19,
231–252 (July 2007)

38. Zhao, T., Palsberg, J., Vitek, J.: Type-based confinement. J. Funct. Program.
16(1), 83–128 (2006)


