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ABSTRACT

Android byte-code transformations are used to optimize applica-
tions (apps) in terms of run-time performance and size. But do they
affect the energy consumption during this process? If they do, can
we employ them to reduce an app’s energy consumption? Given
that most existing energy optimization techniques require develop-
ers to modify their code, a byte-code level modification technique
will save developers’ time and effort. In this paper, we investigate
if byte-code transformations combined with genetic search can
reduce an app’s energy consumption. After applying our technique
on four real-world apps, we find that some combinations of the
byte-code transformations reduce the energy consumption by up
to 11%.
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1 INTRODUCTION

Smartphone apps have become an essential part of our daily lives.
From online education and shopping, to work and business meet-
ings, many essential tasks are performed using apps. Given the
limited energy stored within smartphone batteries, and that apps
consume energy [35], developers aim to develop apps that provide a
rich set of features that are also energy efficient [31, 36]. Developers
are also concerned because battery consuming apps are left with
poor user reviews leading to decreased marketshare [24, 35].
Prior work have shown that apps’ energy consumption can be re-
duced by adopting energy-efficient design patterns [13], APIs [6, 18,
30], and UI elements [29]. Unfortunately, most of these approaches
require developers to make source-code level changes that leave
them with no choice but to: (1) change their code structure [3, 14]
that could affect quality attributes such as maintainability, (2) select
a specific API [6, 18, 30, 32] that could affect developers’ options,
or (3) change the user-interface (UI) structure [28, 41] that could
compromise the design aesthetics of graphic designers. Instead, we
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propose a byte-code level black-box approach towards reducing
the energy consumption of Android apps.

In this paper, we investigate if byte-code level transformations
may reduce the energy consumption of Android apps. This black-
box approach abstracts away energy consumption related details
from the developers, which developers are usually unaware of [34,
35], and let them focus on the functional aspects of their app.

To evaluate the effect of byte-code transformations on Android
apps’ energy consumption, we use byte-code transformations of-
fered by the Redex framework [22], a framework, designed by
Facebook, to reduce app size and improve run-time performance.
We employ genetic search to search for combinations of transfor-
mations that would reduce energy consumption the most, out of
the many transformations available in Redex. Our algorithm first
takes an app as input and generates multiple transformed apps by
applying alternative combinations of byte-code transformations.
We then measure the energy consumption of each transformed app
to find the combination of transformations that transformed the
app to consume least amount of energy.

Our results show that byte-code transformations, when applied
on real-world apps, along with genetic search, reduces energy con-
sumption by up to 11%.

2 PRELIMINARY STUDY

Before implementing our approach, we conducted a preliminary
study to find out if byte-code transformations affect the energy
consumption of Android Apps. To measure that effect, we first
chose a set of transformations from the ones offered by Redex [22].
Table 1 provides a brief description of Redex’s transformations.
For the preliminary study, we randomly choose three transforma-
tions: SMF, MIL, and SIR. To apply the selected transformations on
Android apps, we use the publicly available Android apps dataset
by Chowdhury et al. [12] The dataset contains 24 diverse apps
with 106 auto-generated test cases. We failed to build two apps,
hence we conducted our experiment on 22 Android apps: 2048-
Game, 24Game, AcrylicPaint, Agram, AndQuote, Bomber, Budget,
Calculator, ChromeShell, DalvikExplorer, EyeInSky, Exodus, Face-
Slim, GnuCash, Memopad, PaintElectric, Pinball, SensorReadout,
Temaki, VLC, Wikimedia, and Yelp.

To observe each transformation’s individual effect on an app,
from the set SMF, MIL, and SIR, we apply each transformation
separately on the apps. Furthermore, to observe the collective effect
of the transformations, we apply all three transformations on each
app, and refer to it as an aggregate transformation (AT). Altogether,
we generate 22-4 = 88 solutions (i.e., transformed apps). To measure
the energy consumption of the solutions, we ran each solution’s
test suite 10 times on GreenMiner [20]. Later, we compare the
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energy consumption difference between the best solution (i.e., with
the least energy consumption) and the original app. As a result,
we observed that byte-code transformations reduced the energy
consumption of 12 out of 22 apps, with an average reduction of
1.24% + 1.96% joules, with an outlier maximum reduction of 7.1%
joules for the 24Game app.

Although the results suggest that byte-code transformations af-
fect energy, is every transformation’s effect on energy consumption
universal? To answer this question, for each transformation, we
compare its transformed apps’ energy consumption and find that
each transformation affects each app differently. For example, AT
reduced the energy consumption of VLC but it increased the en-
ergy consumption of 24Game. Similarly, SMF reduced the energy
consumption of 24Game but it increased the energy consumption
of Pinball. To find out if applying byte-code transformations have
a similar effect on all the apps, on the energy consumption of the
transformed apps, we applied a Wilcoxon Rank Sum Test [19] with
a = 0.05. The result implies that each transformation affects each
app differently and none of the transformation holds a universal
effect on energy consumption.

Since every transformation, when applied individually or collec-
tively on an app, has a different effect, we are left with the question
of: “how do we choose transformations that would reduce the en-
ergy consumption of an app?” To answer this question, we employ
genetic search to find the combinations of transformations that
could reduce energy consumption of an app.

3 EXPERIMENTAL SETUP

We investigate a set of 17 byte-code transformations to find energy
reducing subsets. But if we apply all possible subsets of 17 byte-code
transformations on an app, it would yield 217 possible transformed
apps. It is impractical to reliably measure the energy consumption
of that many apps. As a solution, we employ genetic search to find
an effective subset of transformations that could reduce energy
consumption.

Genetic search is based on the principles of the theory of evo-
lution [17, 39]. Genetic search samples from a large population of
possible solutions, evolves the solutions for a new generation, and
keeps sampling and evolving generations in rounds until the best
solution is found [26]. We explain genetic search and how we adopt
it in five steps.

1. Initial population. a search-space of 50 random solutions is gen-
erated. In our experiment, a solution is a transformed app on which
certain transformations have been applied. To generate the initial
population, we select apps and the transformations to apply on
them.

Selecting real-world apps. Measuring energy multiple times for
an app and its possible solutions is time consuming. Therefore,
we choose one app from each category in our dataset. The four
chosen apps include: 2048Game, a game; ChromeShell, an inter-
net browser; AcrylicPaint, an entertainment app; and Agram, an
anagram algorithm utility. The test suite available for these apps is
auto-generated and it invokes multiple unique system calls.

Selecting transformations. From the set of transformations that
Redex offers, we chose transformations that run separately and
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Table 1: A brief description of the byte-code transformations
used in this study. (source: https://fbredex.com/docs/)

Type Description

(CTP) Constant Propagation Substitute the values of known con-
stants in expressions.

(CPP) Copy Propagation Replaces the occurrences of targets of
direct assignments with their values.

(DCE) Dead Code Elimination Removes dead code from methods.

(DSI)  Delete Super Interface Ensures that the method arguments
pass directly through to the super invocation.

(MIL) Method Inlining Inlines methods that are sufficiently small
(or called only a few times).

(MRA) Minimum Register Allocation Uses graph coloring to use
minimum number of registers.

(PHO) Peephole Optimization Eliminates redundant code pat-
terns.

(RDB) Remove Duplicate Blocks Removes duplicate blocks.

(REC) Remove Empty Classes Removes classes with no-
functionality.

(ROI)  Reorder Interfaces Reorders Interface list for each class to
improve the linear walk of list.

(RBI) Rebind Invocations Rebinds all invocations of a virtual
method or interface to their most abstract type.

(RGT) Remove Gotos Removes gotos that are chained together
by rearranging the instruction blocks to be in order.

(RSM) Remove Synthetic Methods Removes synthetic methods by
javac.

(RUC) Remove Unreachable Code Removes un-reachable methods,
fields and classes.

(SIR)  Single Interface Removal Removes interfaces that are im-
plemented only once.

(SMF)  String Minification Minify constant string literals to reduce
APK size.

(SBR) Synthetic bridge removal Removes bridge methods that
javac creates to provide argument and return-type covari-

ance.
Transformations Search
Applied Space
T1 T2 T3
Tl T2 T3

Figure 1: An example of applying two different combina-
tions of three transformations on an app to generate a
search space of two possible solutions (transformed apps).

excluded the ones that enable or depend on other transformations.
As a result, we use a set of 17 byte-code transformations (Table 1).

Applying 17 transformations with their possible combinations
on an app would generate 217 transformed apps. To conservatively
generate an initial population search-space, we start by applying
50 random combinations of 17 transformations to an app. These
50 combinations generate 50 solutions that represent the initial



A Black Box Technique to Reduce Energy Consumption of Android Apps

population of each app. We represent each solution as a 17-bit vector
that shows which transformations were applied to the solution.
Each index of the bit-vector represents a specific transformation,
and its value 0/1 represents if that transformation was applied
or not. Figure 1 shows an example of how 3 types of byte-code
transformations, when applied with two different combinations to
an app, yield two different solutions (i.e., transformed apps) in a
search space.

2. Fitness function. The solutions in the initial population and its
successive generations are evaluated using a fitness function. A
fitness function evaluates each solution’s performance and assigns
it a fitness score. In our case, fitness function measures the energy
consumption of each solution and assigns inverse of the energy
measured as a fitness score to that solution.

Energy Measurement. To accurately measure energy, we use
GreenMiner [20], a hardware-based energy measurement tool that
runs on Galaxy Nexus running Android OS 4.2.2; an Arduino Uno;
and an Adafruit INA219 current sensor for monitoring power us-
age. We calculate the energy of the original app and its solutions in
Joules (J). For accurate energy measurement, we run each solution’s
test 3 times. To aggregate the results, we calculate median energy
consumption. Due to the error within energy measurements, me-
dian is the metric often used for aggregating energy results [20].
The fitness score of the solution is set to the inverse of the calcu-
lated energy consumption, this is to ensure a higher fitness score
for lower energy consumption.

3. Selection. For each successive generation, a sample from the exist-
ing population is selected to develop a new generation. Depending
on the selection technique adopted, solutions can be selected on the
basis of their fitness scores, or solutions can be randomly sampled
from the population.

For selection, we applied the elitist selection strategy [2] and the
tournament selection strategy [7]. Elitist selection allows to pass a
number of solutions with the best fitness score to the next gener-
ation. For elitist, we kept its value to 2 solutions, i.e., forwarding
2 best fitness score solutions in population to the next generation.
In tournament selection, multiple solutions are sampled randomly
from the population, and the solution with the highest fitness score
is selected. We apply tournament selection twice and select two
solutions, a pair, to perform the next step in genetic search.

4. Crossover and mutation. This process increases diversity in the
search-space.

Crossover. We apply uniform crossover [15] among the previ-
ously selected pair of solutions. Using each half of the bit-vector
values from each solution in the pair, two new solutions are gener-
ated and added to the next generation.

Mutation. Mutation is applied, with a certain probability, on
each solution’s bit-vector values. We perform mutation [21] on the
population by flipping the bits of all solutions’ 17-bit vectors with
a probability of 1/17.

5. Termination. This step of genetic search takes place when there
has not been any significant progress in the fitness score of the so-
lutions for several generations, or if several number of generations
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Figure 2: Optimal solutions’ energy consumption in the
search-space. The x-axis indexes the solutions of each app.

have been evaluated without conclusion. We iterate the process of
selection, mutation, and crossover until the termination criteria is
reached. We terminate genetic search when either the energy has
not improved in the last 10 generations or a total of 20 generations
have been evaluated. We chose this termination criteria according
to the cost that we can bear in terms of test execution time and
energy measurement time.

4 RESULTS

After running genetic search separately on four real-world apps,
we get the following results.

Benefits of employing genetic search. Genetic search reduces the
energy consumption for AcrylicPaint (0.42%), ChromeShell (1.15%),
Agram (1.79%), and 2048Game (11.05%). Energy consumption may
be reduced even further if the size of population (i.e., exploration)
and the number of generations (i.e., exploitation) are increased [27].
We have also investigated if a developer may simply apply all trans-
formations to reduce energy consumption. In Table 2, All Trans-
formations Solution Energy (AT) shows that if developers apply all
transformations on an app, it might in fact increase the energy
consumption of an app.

Exploration effectiveness of the proposed technique. We measured
the variation of energy consumption of those optimal solutions that
performed better than the original app. Figure 2 shows that the stan-
dard deviation (SD) of the optimal solutions’ energy consumption
(joules %) is 6.91% among 234 solutions of 2048Game, 0.31% among
116 solutions of AcrylicPaint, 1.32% among 637 solutions of Agram,
and 0.95% among 106 solutions of ChromeShell. The SD values
show how much the energy consumption of the optimal solutions
varied in the search-space. For further inspection, the exploration
effectiveness of our technique may be determined by comparing
the SD of the optimal solutions’ energy consumption with another
evaluation of the proposed technique that has different population
size, genetic operators, or termination criteria.

Cost effectiveness of the proposed technique. Table 2 presents the
estimated cost in terms of time consumption to find the most energy
optimal solution for an app. In the table, Test suite exec. represents
the total time to run a solution’s test suite. For reliable energy mea-
surement, we executed each solution’s test suite 3 times. Solutions
explored are the number of solutions explored in the search-space.
Analysis time represents the overall time (actual cost of our tech-
nique) in hours to explore all the generations of the search space,
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Table 2: A comparison between the energy consumption of Apps’ original version and their best solution. Energy improvement
shows the energy optimized using genetic search. Test suite execution is the time to run a test suite. Solutions explored are
the number of solutions explored in genetic search. Analysis time shows the overall time spent for genetic search.

Apps Original App Best Solution  All Transformation Energy Test suite Solutions  Analysis

Energy (Joules) Energy (Joules) Sol. Energy (Joules) Reduction (%) exec.(s) explored time (hrs)
2048Game 60.31 53.64 55.52 11.05% 60 234 11.7
AcrylicPaint 83.62 83.27 83.74 0.42% 95 116 9.2
Agram 76.39 75.02 crashed 1.79% 77 637 40.9
ChromeShell 107.18 105.95 crashed 1.15% 100 106 8.9

Table 3: Difference in size of the original app and its best so-
lution. Overall Diff. includes resource, binary code, and meta
files, while classes.dex includes binary code.

Application Overall Diff. Diff. in classes.dex

2048Game +0.37% -23.46%
AcrylicPaint -0.07% -0.66%
Agram -0.16% +0.30%
ChromeShell 0.02% -1.26%

which includes test suite execution, energy measurement and re-
sult aggregation. The overall cost of running genetic search on the
selected apps is 9-41 hours. This cost is quite reasonable given the
fact that reducing energy consumption would be the final step in
the release process.

5 RELATED WORK

Genetic algorithms have been employed to reduce energy con-
sumption of smart buildings [42], wireless networks [23], subway
trains [8], grid systems [25], and also smartphone apps.

For software, genetic search has previously been used to find
energy efficient libraries [10, 30]. Genetic search has been used to
address matrix multiplication energy tuning [4], energy efficient
SAT solver [9], and energy efficient assembly code exploration [38].
The closest work is by Georgiou et al. [16], Pallister et al. [33], in
which they found out the effect of the GCC and LLVM compiler con-
figurations on energy consumption. However, since their approach
was evaluated on embedded systems’ benchmarks, their results
can not be generalized over real-world Android apps running on a
smartphone device.

6 DISCUSSION

Out of 17! possible combinations of byte-code transformations
some combinations reduced energy consumption. To investigate
the reasons of this reduction effect, we study the effect of byte-code
transformations on the structure of the apps.

To analyze the difference between the best solution and the
original app, we used APK Analyzer [1]. Table 3 shows the size
difference between the best solution and the original app. The
overall difference includes the binary code, resource files, and meta
files for the app. The difference in classes.dex indicates the size
difference in the binary code. Classes.dex also keeps the code’s
structural information.

To further investigate the structural difference, we extract Chi-
damber and Kemerer object-oriented metrics (CKJM metrics) [40]

from classes.dex. In literature, a sub-set of CKJM metrics have
proven to have a correlation with energy consumption [37]. We
used CKJM tool [40] to measure the difference between the original
app and its best solution for those CKJM metrics that have strong
correlation with energy, such as Depth of Inheritance Tree (DIT),
Number of Immediate Sub-classes (NOC), Coupling between Object
(CBO) and Afferent Coupling (Ca). For 2048Game, we observed the
following changes: DIT +28.3%, NOC -100% and CBO +0.3%. For
ChromeShell, we observed the following changes: CBO +1% and Ca
+1.62%. For AcrylicPaint and Agram, only those metrics got affected
that do not have any correlation with energy. DIT has a positive
correlation while NOC, CBO and Ca have negative correlation with
energy consumption [37]. Therefore, for ChromeShell, the change
in CBO and Ca might be one of the reasons for energy reduction.
However, for the remaining apps, the reasons of energy reduction
remain inconclusive and require further investigation.

7 FUTURE PLANS

In the future, a multi-objective study can be carried out to reduce
energy consumption and app size while improving run-time per-
formance simultaneously. To improve our technique, an automated
approach can be adopted to keep a balance between exploration and
exploitation in genetic search [27]. The exploration speed can be im-
proved by adopting a software based energy estimation model [11].
Other metrics like CKJM can be compared to find out what else
made byte-code transformations reduce energy consumption. Fur-
thermore, to save developers time, our collected dataset [5] that
includes transformed apps’ binary code, structural information,
and energy measurements, can be used to train a model that could
predict the best transformations for an app.

8 CONCLUSION

Byte-code transformations affect the energy consumption of An-
droid apps, but they do not have a universally positive effect. We
show that applying all byte-code transformations on an app could
increase its energy consumption. To find the combination of trans-
formations that reduces energy of an app, we presented a technique
for selecting byte-code transformations using genetic search. The
proposed approach have reduced the energy consumption of 4 real-
world apps by up to 11%.

Using the proposed approach, developers do not have to modify
the code structure or user interface of their apps. Developers can
instead focus on the functional requirements, without worrying
about the energy related technical details of their apps.
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