
Doop: The Latest

Yannis Smaragdakis
University of AthensUniversity of Athens

with George Balatsouras, Martin Bravenboer (LogicBlox Inc.),

Kostas Ferles, Neville Grech, George Kastrinis
and

Anastasis Antoniadis, Nikos Filippakis, Dimitris Mouris,
Nefeli Prokopaki, Kostas Saidis

Our Framework

� Datalog-based pointer analysis framework for Java

� Declarative: what, not how

� Sophisticated, very rich set of analyses� Sophisticated, very rich set of analyses
� subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity, call-

site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type filtering,
precise exception analysis

� Support for full semantic complexity of Java
� jvm initialization, reflection analysis, threads, reference queues, native methods, class

initialization, finalization, cast checking, assignment compatibility

2

http://doop.program-analysis.org

Yannis Smaragdakis

University of Athens

Pointer (or points-to) Analysis

� What objects can a variable point to?

void foo() {
Object a = new A1();
Object b = id(a);

program

foo:a new A1()
bar:a new A2()

points-to

objects represented

by allocation sites

3

}

void bar() {
Object a = new A2();
Object b = id(a);

}

Object id(Object a) {
return a;

}

Yannis Smaragdakis

University of Athens

Pointer Analysis

� What objects can a variable point to?

void foo() {
Object a = new A1();
Object b = id(a);

program

foo:a new A1()
bar:a new A2()
id:a new A1(), new A2()

points-to

4

}

void bar() {
Object a = new A2();
Object b = id(a);

}

Object id(Object a) {
return a;

}

Yannis Smaragdakis

University of Athens

Pointer Analysis

� What objects can a variable point to?

void foo() {
Object a = new A1();
Object b = id(a);

program

foo:a new A1()
bar:a new A2()
id:a new A1(), new A2()

points-to

5

}

void bar() {
Object a = new A2();
Object b = id(a);

}

Object id(Object a) {
return a;

}

foo:b new A1(), new A2()
bar:b new A1(), new A2()

can clearly see it is a

may-analysis

Yannis Smaragdakis

University of Athens

Datalog: Properties

� Limited logic programming

� SQL with recursion

� Prolog without complex terms (constructors)

� Captures PTIME complexity class

Strictly declarative� Strictly declarative

� as opposed to Prolog

� conjunction commutative

� rules commutative

6

Less programming, more specification

Yannis Smaragdakis

University of Athens

Datalog: Declarative Mutual
Recursion

a = new A();
b = new B();
c = new C();
a = b;
b = a;

source

7

b = a;
c = b;

Yannis Smaragdakis

University of Athens

Datalog: Declarative Mutual
Recursion

a = new A();
b = new B();
c = new C();
a = b;
b = a;

source

a new A()
b new B()
c new C()

Alloc

Move

a new A()
b new B()
c new C()
a new B()
b new A()

VarPointsTo

8

b = a;
c = b; a b

b a
c b

Move

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),
VarPointsTo(from, obj).

b new A()
c new B()
c new A()

Yannis Smaragdakis

University of Athens

Datalog: How Well Has It
Worked?

� Our decision to write a full Datalog

frameworked has worked extraordinarily well

� ease of development, maintenance

� ease of experimentation, communication� ease of experimentation, communication

� different engines, parallelization

� But not all is rosy

� some analyses hard to express

� e.g., Steensgaard-style points-to analysis

9Yannis Smaragdakis

University of Athens

One Such Instance: Must-Alias
Analysis (latest work)

� Flow-sensitive must-alias analysis on access paths:

� “must-” : under-approximation

� do two access paths definitely alias at a program point?

� alias classes are equivalence classes� alias classes are equivalence classes

� a ~ b, b ~ c => a ~ c

� not true of may-alias analyses, unless grossly imprecise
(Steensgaard)

� classes need to be maintained compactly

� much like the union-find trees of Steensgaard

� though union operations do not arise here

� access-paths maintained implicitly

10Yannis Smaragdakis

University of Athens

Solution: Specialized Data
Structure for Must-Alias

11Yannis Smaragdakis

University of Athens

Benefits: Lots of Interesting,
Fast Algorithms

� Intersection is the main one

� Often >20x speedup relative to Datalog

implementation

� different factors of 10 due to access path implicit � different factors of 10 due to access path implicit

representation, equivalence classes

� But: need to do this outside Datalog

12Yannis Smaragdakis

University of Athens

Example Algorithm
(Intersection)

13Yannis Smaragdakis

University of Athens

Generalization: DeepDoop

� Extension of Datalog (a DSL) for staging Datalog

analyses, importing/exporting to external analyses

� Kudos to Souffle for ideas!

� Also highly useful in other recent work� Also highly useful in other recent work
� sound may-point-to analysis

� E.g.,

� point-to → call-graph → point-to → escape → point-to → …

� why non-monotonicity?

� points-to maintained if !escape

� points-to strong update if must-alias

14Yannis Smaragdakis

University of Athens

Advertising Portion

� What else are we doing?

� much faster Soot front-end (multi-threaded)

� open-sourcing LogicBlox engine

� experiment with Souffle� experiment with Souffle

� web-based program comprehension service

� Android analysis

� reflection improvements

� information-flow

� Ask me!

15Yannis Smaragdakis

University of Athens

