Doop: The Latest

Yannis Smaragdakis : : : P
University of Athens | ¢ @ @0 @
00
with George Balatsouras, Martin Bravenboer (LogicBlox Inc.), | @ @
Kostas Ferles, Neville Grech, George Kastrinis | @

and
Anastasis Antoniadis, Nikos Filippakis, Dimitris Mouris,
Nefeli Prokopaki, Kostas Saidis

EDUGATION AND LFELONG LEARING = NSRF

2
AN i 8
B B Pedy o Tl
“ - .. N ’WMEM? E- LOG I C B LOX
LIGIoUS A CuLTul of C
uropean Union ANAGING AUTHORITY
lFund ¢o financed by Greece and the European Union

Our Framework -

e Datalog-based pointer analysis framework for Java

e Declarative: what, not how @OOP

e Sophisticated, very rich set of analyses

subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity, call-
site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type filtering,
precise exception analysis

e Support for full semantic complexity of Java

jvm initialization, reflection analysis, threads, reference queues, native methods, class
initialization, finalization, cast checking, assignment compatibility

http://doop.program-analysis.org

Yannis Smaragdakis 2
University of Athens

Pointer (or points-to) Analysis

objects represented

e What objects can a variable point to? ¢
by allocation sites

[program J [points-to
void foo() { foo:a | new A1(Q)
——> Object a = new A1Q); bar:a | new A20)
Object b = i1d(a);
}
void bar() {
—> Object a = new A2Q);
Object b = 1d(a);
}
Object 1d(Object a) {
return a;
}

Yannis Smaragdakis 3
University of Athens

00
:.
Pointer Analysis
e What objects can a variable point to?
[program J [points-to]
void foo() { foo:a | new A1(Q)
Object a = new A1(Q); bar:a hew A2()
—> Object b = id(a); id:a new A1), new A2()
}
void bar() {
Object a = new A2(Q);
—> Object b = id(a);
}
——) Object id(Object a) {
return a;
}

Yannis Smaragdakis 4
University of Athens

000
0000
o000
ee
Pointer Analysis :
e What objects can a variable point to?
[program } [points-to]
void foo() { foo:a | new A1(Q)
Object a = new Al1Q); bar:a | new A2()
——> Object b = id(a); id:a new AL(), new A2()
} foo:b nhew A1(), new A2()
bar:b hew A1(), new A2()
void bar() {
Object a = new A2Q);
Object b = id(a); can clearly see it is a
} may-analysis

Object 1d(Object a) {
return a;

Yannis Smaragdakis 5
University of Athens

Datalog: Properties

e Limited logic programming

SQL with recursion

Prolog without complex terms (constructors)
e Captures PTIME complexity class

e Strictly declarative

as opposed to Prolog
conjunction commutative
rules commutative

Less programming, more specification

Yannis Smaragdakis 6
University of Athens

Datalog: Declarative Mutual | :::

Recursion :

[source]

new AQ);
nhew B(Q);

new C(); [:j>
b;
d,
b;

N T v N T Q

Yannis Smaragdakis 7
University of Athens

Datalog: Declarative Mutual

] [varPointsTo

Recursion
[source] [Alloc
a = new AQ; a nhew AQ)
b = new B(); b hew B()
c = new CQO; C hew CQ)
a =b;
b = a; [Move
C = b; a |b

b a

C b

N N o Vv N T Q

new
new
new
new
new
new
new

AQ
BO
CO
BO
AQ
BO
AQ

VarPointsTo(var, obj) <-
Alloc(var, obj).

VarPointsTo(to, obj) <-
Move(to, from),

VarPointsTo(from, obj).

Yannis Smaragdakis
University of Athens

Datalog: How Well Has It 13
Worked?

e Our decision to write a full Datalog
frameworked has worked extraordinarily well

e case of development, maintenance
e case of experimentation, communication
e different engines, parallelization

e But not all is rosy

e some analyses hard to express
e €.g., Steensgaard-style points-to analysis

Yannis Smaragdakis 9
University of Athens

One Such Instance: Must-Alias | :::
Analysis (latest work)

e Flow-sensitive must-alias analysis on access paths:

e “must-" : under-approximation

e do two access paths definitely alias at a program point?
e alias classes are equivalence classes

e a~b,b~c=>a~c

e not true of may-alias analyses, unless grossly imprecise
(Steensgaard)

e classes need to be maintained compactly

e much like the union-find trees of Steensgaard
e though union operations do not arise here

7 = e access-paths maintained implicitly

Yannis Smaragdakis 10
University of Athens

Solution: Specialized Data
Structure for Must-Alias

Yannis Smaragdakis 11
University of Athens

Benefits: Lots of Interesting, |::
Fast Algorithms

e Intersection is the main one

e Often >20x speedup relative to Datalog
Implementation

e different factors of 10 due to access path implicit
representation, equivalence classes

e But: need to do this outside Datalog

Yannis Smaragdakis 12
University of Athens

Example Algorithm
(Intersection)

Yannis Smaragdakis
University of Athens

13

Generalization: DeepDoop

e Extension of Datalog (a DSL) for staging Datalog
analyses, importing/exporting to external analyses

e Kudos to Souffle for ideas!

e Also highly useful in other recent work
e sound may-point-to analysis
e E.q.,
e point-to — call-graph — point-to — escape — point-to — ...

e Why non-monotonicity?
e points-to maintained if lescape
e points-to strong update if must-alias

Yannis Smaragdakis 14
University of Athens

Advertising Portion

e What else are we doing?

much faster Soot front-end (multi-threaded)
open-sourcing LogicBlox engine
experiment with Souffle

web-based program comprehension service
Android analysis

reflection improvements

information-flow

o Ask me!

Yannis Smaragdakis 15
University of Athens

