
Pointer Analysis for C/C++
with cclyzer

George Balatsouras <gbalats@di.uoa.gr>
University of Athens

mailto:gbalats@di.uoa.gr

cclyzer

❏ Analyzes C/C++ programs
translated to LLVM Bitcode

❏ Declarative framework

❏ Analyzes written in Datalog rules

❏ Uses the LogicBlox Datalog
engine

❏ Relations stored as database
tables

❏ Output relations computed using

Datalog’s least fixpoint model of
the program

Static Analysis Framework
for C/C++

LLVM IR - Basic Instructions

❏ Stack allocations (1) p = alloca [type]

❏ Heap allocations (2) p = malloc nbytes

❏ Load from address (3) v = load p

❏ Store to address (4) store v, p

❏ Address-of-field (5) poffset = &(p->f)

❏ Address-of-array-index (6) poffset = &(p[i])

❏ Function call (7) v = call fn (arg1, arg2, ...)

❏ No-op cast (8) v = bitcast p to [type]

LLVM Bitcode vs Java Bytecode

❏ As in C, an instance field can have its
address taken

❏ ... and then loaded elsewhere.

❏ By elsewhere, we mean even in a
different function

❏ Expression ‘p->f’ in fact translates to:
poffset = &(p->f)
v = load poffset

❏ Impossible in Java

❏ May only allocate objects and then load
from or store to some field

❏ Load/store instructions hence are
ternary, containing an extra field
operand

I. Addresses of Fields

LLVM Bitcode Java Bytecode*

LLVM Bitcode vs Java Bytecode

❏ All source-level variables become pointers
... unless optimized away

❏ E.g., ‘int p = 3;’ becomes:

%p = alloca i32

store i32 3, i32* %p

❏ ‘&p’ becomes just ‘%p’

❏ Subsequent assignments to ‘p’ become

store instructions to ‘%p’

❏ Additional temporary variables are
introduced for intermediate
expressions (e.g., ‘%1’, ‘%2’)

❏ Both ‘%p’and ‘%1’, ‘%2’are virtual
registers.

❏ At register allocation:
i. some will be replaced by

physical registers

ii. some will be spilled.

II. Virtual registers

LLVM Bitcode

Pointer Analysis on LLVM bitcode

Java Memory
Abstraction

❏ Clear distinction

❏ variables reside on
stack

❏ allocated objects
reside on heap

❏ Pointer analysis

❏ variables point-to
heap objects

❏ heap objects point-to
other heap objects
through some field

Stack

Heap

new LinkedList ()

new LinkedList.Node (...) next

head

new String (“some string”)

new String (“another string”)

data

data

List<String> myStrings;

String firstStr;

C/C++ Memory
Abstraction
❏ Objects may be allocated:

1. either on the heap
2. or on the stack

❏ Pointer analysis
❏ Dereference edges

from abstract object to
another abstract
object

❏ What about field edges?

❏ Objects contain other
objects; unlike Java

❏ Recall: we can take the
address of a field

Stack

Heap

new list::node (...) next

head new string (“some string”)

new string (“another string”)

data

data

list<string> myStrings;

string *firstStr;

Our LLVM Memory
Abstraction

❏ Decouple a variable from its
stack allocation

❏ From now on, by variable, we
mean virtual register

❏ Pointer analysis

❏ Variables point-to
(abstract) objects

❏ Objects, when
dereferenced point-to
other objects

❏ Fields of objects are
objects themselves

Stack

Heap

new list::node (...)

new string (“some string”)

new string (“another string”)

list<string> myStrings;
string *firstStr;

Virtual
Registers

%myStrings %firstStr

node* myStrings.head;

string* new
list::node()->data;

node* new
list::node()->next;

Analyzing C/C++ code with
cclyzer

https://github.com/plast-lab/cclyzer

int func() {
 int*** %p = alloca [int **];
 void* %1 = call @malloc(8);
 int** %2 = bitcast %1 to int**;

 store %2, %p;
 int** %3 = load %p;

 ret %3;
}

Simple Example: Computing Points-to

func::mallocint **func::p;

func::%p func::%1 func::%2 func::%3

LLVM Bitcode

int* @gv = global int 0;

%struct.s = type { int, int* }

void func() {
 %x = alloca [%struct.s];
 %1 = getelementptr %x, 0, 1; // &(x.
f1)
 store @gv, %1;
}

Field Sensitivity

Revisiting points-to

LLVM Bitcode

@gv

“@gv”

struct s func::x;

int func::x.f0;

int *func::x.f1;

func::%x func::%1

int* @gv = global int 0;

void func() {
 %x = alloca [100 x int*];
 %1 = getelementptr %x, 0, 5; // &(x
[5])
 store @gv, %1;
}

Array Sensitivity

Revisiting points-to

LLVM Bitcode

@gv

“@gv”

[int *] func::x;

int *func::x[5];

func::%x func::%1

int* @gv = global int 0;

void func() {
 %x = alloca [100 x int*];
 %i = ...
 %1 = getelementptr %x, 0, %i; // &(x
[i])
 store @gv, %1;
}

Array Sensitivity

Revisiting points-to

LLVM Bitcode

@gv

“@gv”

[int *] func::x;

int *func::x[*];

func::%x func::%1

Array Sensitivity

❏ Define partial order

❏ (n1, n2) when n1 can be
turned to n2 by substituting
constant indices with ‘*’

❏ points-to set of a node is a
superset of the points-to set of
its parent

❏ At load instructions, merge
with the points-to sets of all
children nodes

x[0][3].f1[*];

x[0][*].f1[*];

x[0][*].f1[4];

x[0][3].f1[6]; x[0][3].f1[4]; x[0][2].f1[4];

x[*][*].f1[*];

Type back-propagation

Strong Type Information

❏ Analysis only creates typed abstract subobjects

❏ Must determine the type of their base object

❏ What about objects of unknown type (e.g., malloc())?

❏ Type back-propagation:
❏ track cast instructions (resp. types) that an object of unknown type flows to

❏ create a new abstract object per possible type, for a single allocation site

❏ In turn, more abstract subobjects can now be created

Analyzing C++
code

Challenges

❏ LLVM bitcode is a representation

that is well-suited for C code

❏ Too low-level for C++

❏ C++ features like classes, v-tables,

references, and so on are

translated to low-level constructs

compiled to LLVM IR

Dynamic Dispatch Example

LLVM Bitcode
%class.B = type { int (...)**, ...}

void func() {
 %b = alloca [%class.B];
 ...
 %1 = bitcast %b to int (%class.B*)***
 %2 = load int (%class.B*)** %1
 %3 = getelementptr int (%class.B*)** %2, 1
 %4 = load int (%class.B*)* %3
 call int %4 (%class.B* %b)
}

%b

B b;

%1

int (...)**
b.vptr;

B::foo()

B::VTable

B::VTable[1]

%2 %3 %4

Upcoming SAS ‘16 paper:

Structure-Sensitive Points-To
Analysis for C and C++
George Balatsouras and Yannis Smaragdakis

