
SOFTWARE ENGINEERING
GROUP

SECURE

Plan for change! 
Or how a lack of  

modularity hinders Soot to
reach its true potential

Eric Bodden

What is Soot?

• a free compiler infrastructure, written in Java (LGPL)

• was originally designed to analyze and transform Java
bytecode

• original motivation was to provide a common
infrastructure with which researchers could
compare analyses (points-to analyses)

• has been extended to include decompilation,
visualization, Android support, inter-procedural
analysis support, etc. etc.

2

Current main applications:

• Basis for prototyping new static-analysis
and dynamic-analysis algorithms

• Basis for special-purpose analysis tools

• Currently most analyses probably rather
for Android than Java

3

What is Soot now?

• Started in 1996-97 with the development of coffi by
Clark Verbrugge and some first prototypes of Jimple
IR by Clark and Raja Vallée-Rai

• First publicly-available versions of Soot 1.x were
associated with Raja’s M.Sc. thesis

• New contributions and releases have been added by
many researchers from around the world

• Currently maintained by my research group at
Darmstadt and Paderborn

4

Soot Past and Present

Soot & me (2003)

5

Soot & me (2006)

6

SOFTWARE ENGINEERING
GROUP

SECURE

Thinks to like about Soot

• The Jimple IR

Typed, stackless 3-address code

• Analyses based on Jimple

Mainly: Call-graph construction, points-to analysis

Many clients: typestate, race detection, slicing, taint
analysis, performance analyses, etc. etc.

7

SOFTWARE ENGINEERING
GROUP

SECURE

Also: everything’s so easy to access!

Scene.v().getSootClass(name)
Scene.v().getMainClass()
Scene.v().getEntryPoints()
Scene.v().getActiveHierarchy()
...

8

Thinks to like about Soot

SOFTWARE ENGINEERING
GROUP

SECURE

Soot’s always in control

9

Soot phases

cg

w
jtp

w
jop

w
jap

jtp jop jap bb tag

jtp jop jap bb tag

jtp jop jap bb tag

jtp jop jap bb tag

jb

jb

jb

jb

Analyzing Java Programs with Soot – p. 88/108

Thinks to like about Soot

SOFTWARE ENGINEERING
GROUP

SECURE

Instrumentation really is a piece of cake:

Chain stmts = methodBody.getUnits();

stmts.insertBefore(oldStmt, newStmt);

10

Thinks to like about Soot

SOFTWARE ENGINEERING
GROUP

SECURE

Things one learns to 
dislike about Soot

• The Jimple IR

Because everything depends on it

Because it’s construction is slow

• My wish: An extensible, fast to compute IR
with explicitly declared assumptions and
dependencies

11

SOFTWARE ENGINEERING
GROUP

SECURE12

Everything’s so easy to access!

Scene.v().getSootClass(name)
Scene.v().getMainClass()
Scene.v().getEntryPoints()
…

Things one learns to 
dislike about Soot

SOFTWARE ENGINEERING
GROUP

SECURE

Things one learns to 
dislike about Soot

13

Everything’s so easy to access!

• Problem: Everything depends on the
scene; strong coupling throughout

• Soot 2.0 introduced way to reset all
singletons

SOFTWARE ENGINEERING
GROUP

SECURE

Things one learns to 
dislike about Soot

What I would like:

• Modularly composable analyses

Through Dependency injection (?)

• No global state, explicit passing of all state

• More easily supports incremental updates etc.

14

SOFTWARE ENGINEERING
GROUP

SECURE

Soot’s always in control

What if e.g. an IDE should be in control?

Hence maybe I’d actually prefer if Soot were a
library instead of a framework.

→ No inversion of control

15

Things one learns to 
dislike about Soot

SOFTWARE ENGINEERING
GROUP

SECURE16

Ability to instrument makes things slow:

O(|Stmt|)

Things one learns to 
dislike about Soot

SOFTWARE ENGINEERING
GROUP

SECURE17

Ability to instrument makes things slow:

Profiling revealed that lots of time is spent in
such operations, which are useless for folks
who only want to do static analysis.

I want the common case to be fast,  
uncommon case to be possible.

Things one learns to 
dislike about Soot

SOFTWARE ENGINEERING
GROUP

SECURE

My wish list for a “Soot 3.0”

18

Extensible, flexible IR,  
created “on-demand”

no global state
explicit passing of state

no inversion of control  
i.e. client is in control

no performance 
compromises due to 

instrumentation

Prof. Dr. Eric Bodden
Chair for Software Engineering
Heinz Nixdorf Institut  
Zukunftsmeile 1  
33102 Paderborn

Telefon: +49 5251 60-3313  
eric.bodden@uni-paderborn.de

https://www.hni.uni-paderborn.de/swt/

https://blogs.uni-paderborn.de/sse/

SOFTWARE ENGINEERING
GROUP

SECURE19

mailto:eric.bodden@uni-paderborn.de
https://www.hni.uni-paderborn.de/swt/
https://blogs.uni-paderborn.de/sse/

