Plan for change!

Or how a lack of
modularity hinders Soot to
reach its true potential

Eric Bodden

LS\ pADERBORN UNIVERSITY

The University for the Information Society

~ Fraunhofer

IEM

HEINZ NIXDORF INSTITUT SECURE

SOFTWARE ENGINEERING
GGGGG

@

y
y 4

V- o
What is Soot!?)OOt

® a free compiler infrastructure, written in Java (LGPL)

® was originally designed to analyze and transform Java
bytecode

® original motivation was to provide a common
infrastructure with which researchers could
compare analyses (points-to analyses)

® has been extended to include decompilation,
visualization, Android support, inter-procedural
analysis support, etc. etc.

y
y 4

V- o
What is Soot now!)OOt

Current main applications:

® Basis for prototyping new static-analysis
and dynamic-analysis algorithms

® Basis for special-purpose analysis tools

® Currently most analyses probably rather
for Android than Java

y
y 4

- of

Soot Past and Present)OOt

® Started in 1996-97 with the development of coffi by

Clark Verbrugge and some first prototypes of Jimple
IR by Clark and Raja Vallee-Rai

® First publicly-available versions of Soot |.x were
associated with Raja’s M.Sc. thesis

® New contributions and releases have been added by
many researchers from around the world

® Currently maintained by my research group at
Darmstadt and Paderborn

4

Soot & me (2003)

Soot & me (2006)

Thinks to like about Soot

® The Jimple IR

o Typed, stackless 3-address code

® Analyses based on |Jimple

o Mainly: Call-graph construction, points-to analysis
Y grap > Y

o Many clients: typestate, race detection, slicing, taint
analysis, performance analyses, etc. etc.

HEINZ NIXDORF INSTITUT 7 SECURE

SOFTWARE ENGINEERING
GROUP

@

Thinks to like about Soot ‘

Also: everything’s so easy to access!

Scene.v().getSootClass(name)
Scene.v().getMainClass()
Scene.v().getEntryPoints()

()

Scene.v().getActiveHierarchy()

HEINZ NIXDORF INSTITUT 8 SECURE

SOFTWARE ENGINEERING
GGGGG

@

Thinks to like about Soot

Soot’s always in control

HEINZ NIXDORF INSTITUT

@

jo jto Hjop Hjap HbbHtag
jb\ / jtp Hjop Hiap Hbb Htag
\o s=| 2| &)
(@) —+ @) Q
M IPlIICIICTN. 1. |
jo / \Jtp jop Hjap Hbb Htag
jb jto Hjop Hjap HbbHtag
9 SECURE

SOFTWARE ENGINEERING

GROUP

Thinks to like about Soot ‘

Instrumentation really is a piece of cake:

Chain stmts = methodBody.getUnits();

stmts.insertBefore(oldStmt, newStmt);

HEINZ NIXDORF INSTITUT 10 SECURE

SOFTWARE ENGINEERING
GROUP

@

Things one learns to
dislike about Soot

® The |Jimple IR

o Because everything depends on it

o Because it’s construction is slow

® My wish: An extensible, fast to compute IR

with explicitly declared assumptions and
dependencies

HEINZ NIXDORF INSTITUT ¥ SECURE

SOFTWARE ENGINEERING
GROUP

@

Things one learns to
dislike about Soot

Everything’s so easy to access!

Scene.v().getSootClass(name)
Scene.v().getMainClass()

Scene.v().getEntryPoints()

HEINZ NIXDORF INSTITUT 12 SECURE

SOFTWARE ENGINEERING
GGGGG

@

Things one learns to
dislike about Soot

Everything’s so easy to access!

® Problem: Everything depends on the
scene; strong coupling throughout

® Soot 2.0 introduced way to reset all
singletons

HEINZ NIXDORF INSTITUT 13 SECURE

SOFTWARE ENGINEERING
GGGGG

@

Things one learns to
dislike about Soot

What | would like:

® Modularly composable analyses
o Through Dependency injection (?)
® No global state, explicit passing of all state

® More easily supports incremental updates etc.

HEINZ NIXDORF INSTITUT 14 SECURE

SOFTWARE ENGINEERING
GROUP

@

Things one learns to
dislike about Soot

Soot’s always in control

What if e.g. an IDE should be in control?

Hence maybe I'd actually prefer if Soot were a
library instead of a framework.

— No inversion of control

HEINZ NIXDORF INSTITUT E SECURE

SOFTWARE ENGINEERING
GROUP

@

Things one learns to
dislike about Soot

Ability to instrument makes things slow:

/** Returns the first non-identity stmt in this body. */
public Stmt getFirstNonIdentityStmt()

{
Iterator<Unit> it = getUnits().1iterator();
Object o = null,;
while (it.hasNext()) O(lStmt‘)
if (!((o = it.next()) instanceof IdentityStmt))
break;
i1f (0 == null)
throw new RuntimeException("no non-id statements!");
return (Stmt)o;
}
HEINZ NIXDORF INSTITUT 16 SECURE

@

SOFTWARE ENGINEERING
GROUP

Things one learns to
dislike about Soot

Ability to instrument makes things slow:

Profiling revealed that lots of time is spent in
such operations, which are useless for folks
who only want to do static analysis.

| want the common case to be fast,
uncommon case to be possible.

@

HEINZ NIXDORF INSTITUT ¥ SECURE

SOFTWARE ENGINEERING
GROUP

My wish list for a “Soot 3.0"

Extensible, flexible IR, no global state
created “on-demand” ‘ explicit passing of state

s

no inversion of control no performance
i.e. client is in control compromises due to

INstrumentation ‘

HEINZ NIXDORF INSTITUT E SECURE

SOFTWARE ENGINEERING
GROUP

HEINZ NIXDORF INSTITUT

Prof. Dr. Eric Bodden

Chair for Software Engineering
Heinz Nixdorf Institut

Zukunftsmeile |
33102 Paderborn

Telefon: +49 5251 60-3313
eric.bodden(@uni-paderborn.de

https://www.hni.uni-paderborn.de/swt/

https://blogs.uni-paderborn.de/sse/

SECURE

SOFTWARE ENGINEERING
GROUP

19

@

mailto:eric.bodden@uni-paderborn.de
https://www.hni.uni-paderborn.de/swt/
https://blogs.uni-paderborn.de/sse/

