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Plan for change! 
Or how a lack of  

modularity hinders Soot to 
reach its true potential

Eric Bodden



What is Soot?

• a free compiler infrastructure, written in Java (LGPL)

• was originally designed to analyze and transform Java 
bytecode

• original motivation was to provide a common 
infrastructure with which researchers could 
compare analyses (points-to analyses)

• has been extended to include decompilation,  
visualization, Android support, inter-procedural 
analysis support, etc. etc.
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Current main applications:

• Basis for prototyping new static-analysis 
and dynamic-analysis algorithms

• Basis for special-purpose analysis tools

• Currently most analyses probably rather 
for Android than Java
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What is Soot now?



• Started in 1996-97 with the development of coffi by 
Clark Verbrugge and some first prototypes of Jimple 
IR by Clark and Raja Vallée-Rai

• First publicly-available versions of Soot 1.x were 
associated with Raja’s M.Sc. thesis

• New contributions and releases have been added by 
many researchers from around the world

• Currently maintained by my research group at 
Darmstadt and Paderborn
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Soot Past and Present



Soot & me (2003)

5



Soot & me (2006)
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Thinks to like about Soot

• The Jimple IR

Typed, stackless 3-address code

• Analyses based on Jimple

Mainly: Call-graph construction, points-to analysis

Many clients: typestate, race detection, slicing, taint 
analysis, performance analyses, etc. etc.
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Also: everything’s so easy to access!

Scene.v().getSootClass(name)
Scene.v().getMainClass()
Scene.v().getEntryPoints()
Scene.v().getActiveHierarchy()
...
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Thinks to like about Soot
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Soot’s always in control
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Soot phases
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Analyzing Java Programs with Soot – p. 88/108

Thinks to like about Soot
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Instrumentation really is a piece of cake:

Chain stmts = methodBody.getUnits();

stmts.insertBefore(oldStmt, newStmt);
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Thinks to like about Soot
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Things one learns to 
dislike about Soot

• The Jimple IR

Because everything depends on it

Because it’s construction is slow

• My wish:  An extensible, fast to compute IR 
with explicitly declared assumptions and 
dependencies
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Everything’s so easy to access!

Scene.v().getSootClass(name)
Scene.v().getMainClass()
Scene.v().getEntryPoints()
…

Things one learns to 
dislike about Soot
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Things one learns to 
dislike about Soot
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Everything’s so easy to access!

• Problem: Everything depends on the 
scene; strong coupling throughout

• Soot 2.0 introduced way to reset all 
singletons
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Things one learns to 
dislike about Soot

What I would like:

• Modularly composable analyses

Through Dependency injection (?)

• No global state, explicit passing of all state

• More easily supports incremental updates etc.
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Soot’s always in control

What if e.g. an IDE should be in control?

Hence maybe I’d actually prefer if Soot were a 
library instead of a framework.

→ No inversion of control
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Things one learns to 
dislike about Soot
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Ability to instrument makes things slow:

O(|Stmt|)

Things one learns to 
dislike about Soot



SOFTWARE ENGINEERING
GROUP

SECURE17

Ability to instrument makes things slow:

Profiling revealed that lots of time is spent in 
such operations, which are useless for folks 
who only want to do static analysis.

I want the common case to be fast,  
uncommon case to be possible.

Things one learns to 
dislike about Soot
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My wish list for a “Soot 3.0”
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Extensible, flexible IR,  
created “on-demand”

no global state
explicit passing of state

no inversion of control  
i.e. client is in control

no performance 
compromises due to 

instrumentation
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