

Unified information-flow and points-to
analysis

Neville Grech
nevillegrech@gmail.com

University of Athens
University of Malta

Funded by the Reach High scholars programme.
Financed by the European Union and Government of Malta.

mailto:nevillegrech@gmail.com

Terminology (static analyses)

Points-to analysis: Which objects can a variable
point to?

Information flow analysis:
● Data flow analysis: To which variables do values

flow in a procedure?
● Taint analysis: Which variables can be changed

through user input?
● Program Dependency analysis: Which control

flows and data does an program element depend on?

Unified information-flow and points-to
analysis

Parsing the title again...

Unified: That is or has been made into one from
separate parts; united, combined, consolidated.

I.E. Information flow analysis is not a client of points-
to analysis in this work.

The big picture

Original program facts Additional program facts

Complex,
 whole program

points-to
analysis.

Reflection
Logic

Heap
stores/loads

Context
Sensitivity

Exception
Analysis

Types

Instructions

objects

Instructions+

F
ake objects

Small core
modifications

Points-to
+ information-flow

analysis

Summary of approach

Information flow

Represent information as artificial
abstract objects.

Information is introduced at call
sites of predefined input functions.

Run modified points-to analysis
framework, Doop.

Dual in points-to

Same abstraction
as heap Allocation.

As opposed to an
allocation site.

Datalog-based pointer analysis framework for Java

Declarative: less programming, more specification

Sophisticated, very rich set of analyses
subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-
sensitivity, call-site sensitive, object sensitive, thread sensitive, context-sensitive heap,
abstraction, type filtering, precise exception analysis

Support for full semantic complexity of Java
jvm initialization, reflection analysis, threads, reference queues, native methods, class
initialization, finalization, cast checking, assignment compatibility

(Y. Smaragdakis, M. Bravenboer,

G. Kastrinis, G. Balatsouras)

Why unify analyses?

We've seen we can exploit interesting synergies:
● The very same algorithm can compute,
simultaneously, two interlinked but separate
analyses...

● Existing work on points-to analysis (e.g.,
reflection) applies to information-flow analysis
without extra work.

● Performance synergy (less repeated
computation).

Reuse most of the logic that deals with the
semantics of the language, in particular:
● Logic for various heap reads and writes (loading
and storing, parameter passing...).

● Logic dealing with reflective operations.

● Various flavours of context sensitivities (e.g. Obj,
Call-site, etc.).

Why unify analyses?

Technical approach: redefinitions

 Pointer analysis:

 VarPointsTo(var:Variable,heap:HeapAllocation, …)

 Pointer + information flow analysis:

 FlowsToVar(var:Variable,hinfo:HeapOrInfo, …)

where HeapOrInfo is an abstraction of

 + heap allocation site (HeapAllocation)

 + sites where external information is introduced
(Information).

FlowsToVar now subsumes VarPointsTo relation on
HeapAllocation, and information flow.

Technical approach: introducing
information

Information(invocation, type) ←

 InformationSourceMethod(method),

 CallGraphEdge(invocation, method, …),

 MethodReturnType(method, type).

HeapOrInfo(…) ← Information(…).

HeapOrInfo(…) ← HeapAllocation(…).

Context sensitive FlowsToVar

invocation: Object to = x.method();

Record(ctx, invocation, hctx),

InformationObject(hctx, invocation),

FlowsToVar(to, invocation, ctx, hctx) ←

 TaintSourceMethod(method, …),

 CallGraphEdge(invocation,method,ctx),

 AssignReturnValue(to, invocation).

More modifications

The unification abstraction breaks in some
parts:
● Sanitization.
● Call graph construction in the presence of
artificial heap objects (Information).

● More complex information transfer than
assignments.

● Information can move through objects of
unrelated types.

Information transfer example

void doGet(Request req, Response resp) {

 String str = req.getParameter("name"); // src

 StringBuilder strB = new StringBuilder();

 strB = strB.append(str);

 strB = strB.append(“ Doe”);

 PrintWriter writer = resp.getWriter();

 writer.println(strB.toString()); /* Leak */

}

Analysing open programs
(Future work)

Information flow analysis has many applications:
analyzing libraries, webapps, etc.

Inversion of control is prevalent here.

We need to create mock abstract objects to
initialize the program.

We need to bridge control flow discontinuity (e.g.
for Android apps).

Thank you!

More questions/
discussion?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

